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PREFACE

The first edition of this book appeared over fifteen years ago. It was the first
chemical engineering textbook to combine modeling, simulation, and control. It
also was the first chemical engineering book to present sampled-data control.
This choice of subjects proved to be popular with both students and teachers and
of considerable practical utility.

During the ten-year period following publication, I resisted suggestions
from the publisher to produce a second edition because I felt there were really
very few useful new developments in the field. The control hardware had changed
drastically, but the basic concepts and strategies of process control had under-
gone little change. Most of the new books that have appeared during the last

 years are very similar in their scope and content to the first edition. Basic
classical control is still the major subject.

However, in the last five years, a number of new and useful techniques have
been developed. This is particularly true in the area of multivariable control.
Therefore I feel it is time for a second edition.

In the area of process control, new methods of analysis and synthesis of
control systems have been developed and need to be added to the process control
engineer’s bag of practical methods. The driving force for much of this develop-
ment was the drastic increase in energy costs in the 1970s. This led to major
redesigns of many new and old processes, using energy integration and more
complex processing schemes. The resulting plants are more interconnected. This
increases control loop interactions and expands the dimension of control prob-
lems. There are many important processes in which three, four, or even more
control loops interact.

As a result, there has been a lot of research activity in multivariable control,

both in academia and in industry. Some practical, useful tools have been devel-
oped to design control systems for these multivariable processes. The second
edition includes a fairly comprehensive discussion of what I feel are the useful

techniques for controlling multivariable processes.

xxi
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Another significant change over the last decade has been the dramatic
increase in the computational power readily available to engineers. Most calcu-
lations can be performed on personal computers that have computational horse-
power equal to that provided only by mainframes a few years ago. This means
that engineers can now routinely use more rigorous methods of analysis and
synthesis. The second edition includes more computer programs. All are suitable
for execution on a personal computer.

In the area of mathematical modeling, there has been only minor progress.
We still are able to describe the dynamics of most systems adequately for engi-
neering purposes. The trade-off between model rigor and computational effort
has shifted toward more precise models due to the increase in computational
power noted above. The second edition includes several more examples of models
that are more rigorous.

In the area of simulation, the analog computer has almost completely dis-

appeared. Therefore, analog simulation has been deleted from this edition. Many
new digital integration algorithms have been developed, particularly for handling
large numbers of “stiff” ordinary differential equations. Computer programming
is now routinely taught at the high school level. The-second edition includes an
expanded treatment of iterative convergence methods  of numerical integra-
tion algorithms for ordinary differential equations, including both explicit and
implicit methods.

The second edition presents some of the material in a slightly different
sequence. Fifteen additional years of teaching experience have convinced me that
it is easier for the students to understand the time,  and frequency tech-
niques if both the dynamics and the control are presented together for each
domain. Therefore,  dynamics and closedloop control are both dis-
cussed in the time domain, then in the  domain, and finally in the fre-
quency domain. The  domain is discussed in Part VII.

There has been a modest increase in the number of examples presented in
the book. The number of problems has been greatly increased. Fifteen years of
quizzes have yielded almost 100 new problems.

The new material presented in the second edition has come from many
sources. I would like to express my thanks for the many useful comments and
suggestions provided by colleagues who reviewed this text during the course of its
development, especially to Daniel H. Chen, Lamar University; T. S. Jiang, Uni-
versity of Illinois-Chicago; Richard Kerrnode, University of Kentucky; Steve
Melsheimer, Cignson University; James Peterson, Washington State University;
and R. Russell Rhinehart, Texas Tech University. Many stimulating and useful
discussions of multivariable control with Bjorn Tyreus of DuPont and Christos
Georgakis of Lehigh University have contributed significantly. The efforts and
suggestions of many students are gratefully acknowledged. The  group
(Luyben, Alatiqi, Chiang, Elaahi, and Yu) developed and evaluated much of
the new material on multivariable control discussed in Part VI. Carol Biuckie

helped in the typing of the final manuscript. Lehigh undergraduate and graduate
classes have contributed to the book for over twenty years by their questions,
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youthful enthusiasm, and genuine interest in the subject. If the ultimate gift that
a teacher can be given is a group of good students, I have indeed been blessed.
Alhamdulillahi!

William L. Luyben
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CHAPTER

1
INTRODUCTION

This chapter is an introduction to process dynamics and control for those stu-
dents who have had little or no contact or experience with real chemical engi-
neering processes. The objective is to illustrate where process control fits into the
picture and to indicate its relative importance in the operation, design, and devel-
opment of a chemical engineering plant.

This introductory chapter is, I am sure, unnecessary for those practicing
engineers who may be using this book. They are well aware of the importance of
considering the dynamics of a process and of the increasingly complex and
sophisticated control systems that are being used. They know that perhaps 80
percent of the time that one is “on the plant” is spent at the control panel,
watching recorders and controllers (or CRTs). The control room is the nerve
center of the plant.

1.1 EXAMPLES OF THE ROLE
OF PROCESS DYNAMICS AND CONTROL
Probably the best way to illustrate what we mean by process dynamics and
control is to take a few real examples. The first example describes a simple
process where dynamic response, the time-dependent behavior, is important. The
second example illustrates the use of a single feedback controller. The third
example discusses a simple but reasonably typical chemical engineering plant and
its conventional control system involving several controllers.

Example 1.1. Figure 1.1 shows a tank into which an incompressible
density) liquid is pumped at a variable rate  This inflow rate can vary with

1
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FIGURE 1.1
Gravity-flow tank.

time because of changes in operations upstream. The height of liquid in the vertical
cylindrical tank is  (ft). The flow rate out of the tank is F

Now ,  andf will all vary with time and are therefore functions of time 
Consequently we use the notation  and . Liquid leaves the base of the

tank via a long horizontal pipe and discharges into the top of another tank. Both
tanks are open to the atmosphere.

Let us look first at the steadystate conditions. By steadystate we mean, in
most systems, the conditions when nothing is changing with time. Mathematically

this corresponds to having all time derivatives equal to zero, or to allowing time to
become very large, i.e., go to infinity. At steadystate the flow rate out of the tank
must equal the flow rate into the tank. In this book we will denote steadystate

values of variables by an overscore or bar above the variables. Therefore at 
state in our tank system  = 

For a given  the height of liquid in the tank at steadystate would also be
some constant  The value of  would be that height that provides enough hydrau-

lic pressure head at the inlet of the pipe to overcome the frictional losses of liquid
flowing down the pipe. The higher the flow rate  the higher  will be.

In the steadystate design of the tank, we would naturally size the diameter of

the exit line and the height of the tank so that at the maximum flow rate expected
the tank would not overflow. And as any good, conservative design engineer knows,
we would include in the design a 20 to 30 percent safety factor on the tank height.

Actual height specified

Maximum design height

FIGURE 1.2FIGURE 1.2
Steadystate height versus flow.Steadystate height versus flow.



Since this is a book on control and instrumentation, we might also mention that a

high-level alarm and/or an interlock (a device to shut off the feed if the level gets too
high) should be installed to guarantee that the tank would not spill over. The tragic
accidents at Three Mile Island, Chernobyl, and Bhopal illustrate the need for 
designed and well-instrumented plants.

The design of the system would involve an economic balance between the cost
of a taller tank and the cost of a bigger pipe, since the bigger the pipe diameter the

lower is the liquid height. Figure 1.2 shows the curve of  versus  for a specific
numerical case.

So far we have considered just the traditional steadystate design aspects of
this fluid flow system. Now let us think about what would happen dynamically if we
changed  How will  and  vary with time? Obviously F eventually has to
end up at the new value of F,. We can easily determine from the steadystate design
curve of Fig. 1.2 where  will go at the new steadystate. But what paths will  and

take to get to their new steadystates?
Figure 1.3 sketches the problem. The question is which curves (1 or 2) rep-

resent the actual paths that F and  will follow. Curves 1 show gradual increases in
 and F to their new steadystate values. However, the paths could follow curves 2

where the liquid height rises above its final steadystate value. This is called
“overshoot.” Clearly, if the peak of the overshoot in  is above the top of the tank,

we would be in trouble.
Our steadystate design calculations tell us nothing about what the dynamic

response to the system will be. They tell us where we will start and where we will
end up but not how we get there. This kind of information is what a study of the

dynamics of the system will reveal. We will return to this system later in the book to
derive a mathematical model of it and to determine its dynamic response quantita-
tively by simulation.

Example 1.2. Consider the heat exchanger sketched in Fig. 1.4. An oil stream passes
through the tube side of a tube-in-shell heat exchanger and is heated by condensing
steam on the shell side. The steam condensate leaves through a steam trap (a device
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FIGURE 1.4

that only permits liquid to pass through it, thus preventing “blow through” of the

steam vapor). We want to control the temperature of the oil leaving the heat
exchanger. To do this, a thermocouple is inserted in a thermowell in the exit oil
pipe. The thermocouple wires are connected to a “temperature transmitter,” an elec-
tronic device that converts the millivolt thermocouple output into a  to

milliampere “control signal.” The current signal is sent into a temperature
controller, an electronic or digital or pneumatic device that compares the desired
temperature (the “setpoint”) with the actual temperature, and sends out a signal to

a control valve. The temperature controller opens the steam valve more if the tem-
perature is too low or closes it a little if the temperature is too high.

We will consider all the components of this temperature control loop in more
detail later in this book. For now we need’only appreciate the fact that the auto-

matic control of some variable in a process requires the installation of a sensor, a

transmitter, a controller, and a final control element (usually a control valve). Most
of this book is aimed at learning how to decide what type of controller should be
used and how it should be “tuned,” i.e., how should the adjustable tuning param-
eters in the controller be set so that we do a good job of controlling temperature.

Example 1.3. Our third example illustrates a typical control scheme for an entire
simple chemical plant. Figure 1.5 gives a simple schematic sketch of the process
configuration and its control system. Two liquid feeds are pumped into a reactor in
which they react to form products. The reaction is exothermic, and therefore heat

must be removed from the reactor. This is accomplished by adding cooling water to
a jacket surrounding the reactor. Reactor  is pumped through a preheater
into a distillation column that splits it into two product streams.

‘Traditional steadystate design procedures would be used to specify the

various pieces of equipment in the plant:

Fluid mechanics. Pump heads, rates, and power; piping sizes; column tray
layout and sizing; heat-exchanger tube and shell side  and sizing

Heat transfer. Reactor heat removal; preheater, reboiler, and condenser heat
transfer areas; temperature levels of steam and cooling water

Chemical kinetics. Reactor size and operating conditions (temperature, pres-
sure, catalyst, etc.)
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Thermodynamics and mass transfer. Operating pressure, number of plates and
reflux ratio in the distillation column; temperature profile in the column; equi-
librium conditions in the reactor

But how do we decide how to control this plant? We will  most of our time in
this book exploring this important design and operating problem. All our studies of
mathematical modeling, simulation, and control theory are aimed at understanding

the dynamics of processes and control systems so that we can develop and design
better, more easily controlled plants that operate more efficiently and more safely.

For now let us say merely that the control system shown in Fig. 1.5 is a
typical conventional system. It is about the minimum that would be needed to run

this plant  without constant operator attention. Notice that even in
this simple plant with a minimum of instrumentation the total number of control

loops is IO. We will find that most chemical engineering processes are multivariable.

1.2 HISTORICAL BACKGROUND
Most chemical processing plants were run essentially manually prior to the

1940s. Only the most elementary types of controllers were used. Many operators
were needed to keep watch on the many variables in the plant. Large tanks were

employed to act as buffers or surge capacities between various units in the plant.

These tanks, although sometimes quite expensive, served the function of filtering
out some of the dynamic disturbances by isolating one part of the process from
upsets occurring in another part.

With increasing labor and equipment costs and with the development of
more severe, higher-capacity, higher-performance equipment and processes in the
1940s and early  it became uneconomical and often impossible to run
plants without automatic control devices. At this stage feedback controllers were

added to the plants with little real consideration of or appreciation for the

dynamics of the process itself. Rule-of-thumb guides and experience were the only
design techniques.

In the 1960s chemical engineers began to apply dynamic analysis and
control theory to chemical engineering processes. Most of the techniques were

adapted from the work in the aerospace and electrical engineering fields. In addi-
tion to designing better control systems, processes and plants were developed or

modified so that they were easier to control. The concept of examining the many

parts of a complex plant together as a single unit, with all the interactions
included, and devising ways to control the entire plant is called systems engineer-
ing. The current popular “buzz” words artificial intelligence and expert systems
are being applied to these types of studies.

The rapid rise in energy prices in the 1970s provided additional needs for
effective control systems. The design and redesign of many plants to reduce
energy consumption resulted in more complex, integrated plants that were much
more interacting. So the challenges to the process control engineer have contin-
ued to grow over the years. This makes the study of dynamics and control even
more vital in the chemical engineering curriculum than it was 30 years ago.
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13 PERSPECTIVE

Lest I be accused of overstating the relative importance of process control to the
main stream of chemical engineering, let me make it perfectly clear that the tools
of dynamic analysis are but one part of the practicing engineer’s bag of tools and
techniques, albeit an increasingly important one. Certainly a solid foundation in
the more traditional areas of thermodynamics, kinetics, unit operations, and
transport phenomena is essential. In fact, such a foundation is a prerequisite for
any study of process dynamics. The mathematical models that we derive are

really nothing but extensions of the traditional chemical and physical laws to
include the time-dependent terms. Control engineers sometimes have a tendency
to get too wrapped up in the dynamics and to forget the steadystate aspects.
Keep in mind that if you cannot get the plant to work at steadystate you cannot
get it to work dynamically.

An even greater pitfall into which many young process control engineers

fall, particularly in recent years, is to get so involved in the fancy computer
control hardware that is now available that they lose sight of the process control
objectives. All the beautiful CRT displays and the blue smoke and mirrors that
computer control salespersons are notorious for using to sell hardware and soft-
ware can easily seduce the unsuspecting control engineer. Keep in mind your
main objective: to come up with an effective control system. How you implement
it, in a sophisticated computer or in simple pneumatic instruments, is of much
less importance.

You should also appreciate the fact that fighting your way through this
book will not in itself make you an expert in process control. You will find that a
lot remains to be learned, not so much on a higher theoretical level as you might
expect, but more on a practical-experience level. A sharp engineer can learn a
tremendous amount about process dynamics and control that can never be put in
a book, no matter how practically oriented, by climbing around a plant, talking
with operators and instrument mechanics, tinkering in the instrument shop, and
keeping his or her eyes open in the control room.

You may question, as you go through this book, the degree to which the
dynamic analysis and controller design techniques discussed are really used in
industry. At the present time 70 to 80 percent of the control loops in a plant are
usually designed, installed, tuned, and operated quite successfully by simple,
of-thumb, experience-generated techniques. The other 20 to 30 percent of the
loops are those on which the control engineer makes his money. They require
more technical knowledge. Plant testing, computer simulation, and detailed con-
troller design or process redesign may be required to achieve the desired per-
formance. These critical loops often make or break the operation of the plant.

I am confident that the techniques discussed in this book will receive wider
and wider applications as more young engineers with this training go to work in
chemical plants. This book is an attempt by an old dog to pass along some useful
engineering tools to the next generation of pups. It represents over thirty years of
experience in this lively and ever-challenging area. Like any “expert,” I’ve learned
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from my successes, but probably more from my failures. I hope this book helps
you to have many of the former and not too many of the latter. Remember the
old saying: “If you are making mistakes, but they are new ones, you are getting
smarter.”

1.4 MOTIVATION FOR STUDYING
PROCESS CONTROL
Some of the motivational reasons for studying the subjects presented in this book
are that they are of considerable practical importance, they are challenging, and
they are fun.

1. Importance. The control room is the major interface with the plant. Automa-
tion is increasingly common in all degrees of sophistication, from single-loop
systems to computer-control systems.

2. Challenging. You will have to draw on your knowledge of all areas of chemical
engineering. You will use most of the mathematical tools available (differential
equations,  transforms, complex variables, numerical analysis, etc.) to
solve real problems.

3. Fun. I have found, and I hope you will too, that process dynamics is fun. You
will get the opportunity to use some simple as well as some fairly advanced
mathematics to solve real plant problems. There is nothing quite like the thrill
of working out a controller design on paper and then seeing it actually work
on the plant. You will get a lot of satisfaction out of going into a plant that is
having major control problems, diagnosing what is causing the problem and
getting the whole plant lined out on specification. Sometimes the problem is in
the process, in basic design, or in equipment malfunctioning. But sometimes it
is in the control system, in basic strategy, or in hardware malfunctioning. Just
your knowledge of what a given control device should do can be invaluable.

1.5 GENERAL CONCEPTS
I have tried to present in this book a logical development. We will begin with
fundamentals and simple concepts and extend them as far as they can be gain-
fully extended. First we will learn to derive mathematical models of chemical
engineering systems. Then we will study some of the ways to solve the resulting
equations, usually ordinary differential equations and nonlinear algebraic equa-
tions. Next we will explore their  (uncontrolled) dynamic behavior.
Finally we will learn to design controllers that will, if we are smart enough, make
the plant run automatically the way we want it to run: efficiently and safely.

Before we go into details in the subsequent chapters, it may be worthwhile

at this point to define some very broad and general concepts and some of the
terminology used in dynamics and control.
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1. Dynamics. Time-dependent behavior of a process. The behavior with no con-

trollers in the system is called the response. The dynamic behavior

with feedback controllers included with the process is called the closedloop
response.

2. Variables.
a. Manipulated oariables. Typically flow rates of streams entering or leaving a

process that we can change in order to control the plant.

b. Controlled variables. Flow rates, compositions, temperatures, levels, and

pressures in the process that we will try to control, either trying to hold

them as constant as possible or trying to make them follow some desired

time trajectory.

c. Uncontrolled variables. Variables in the process that are not controlled.

d. Load disturbances. Flow rates, temperatures, or compositions of streams

entering (but sometimes leaving) the process. We are not free to manipulate

them. They are set by upstream or downstream parts of the plant. The

control system must be able to keep the plant under control despite the

effects of these disturbances.

Example 1.4. For the heat exchanger shown in Fig. 1.4, the load disturbances are oil
feed flow rate  and oil inlet temperature  The steam flow rate  is the manipu-
lated variable. The controlled variable is the oil exit temperature 

Example 1.5. For a binary distillation column (see Fig.  load disturbance vari-

ables might include feed flow rate and feed composition. Reflux, steam, cooling

water, distillate, and bottoms flow rates might be the manipulated variables. Con-
trolled variables might be distillate product composition, bottoms product composi-

tion, column pressure, base liquid level, and reflux drum liquid level. The
uncontrolled variables would include the compositions and temperatures on all the
trays. Note that one physical stream may be considered to contain many variables:

Feed flow rate Distillate composition 
.

Load

disturbances Feed composition Bottom composition 

 Level reflux drum Controlled

Manipulated

variables

FIGURE 1.6

Uncontrolled

variables
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3.

4 .

5 .

Disturbance

Manipulated variable

7

Control
valve

Controlled variable
Process

I

Measurement
device

FIGURE 1.7
Feedback control loop.

its flow rate, its composition, its temperature, etc., i.e., all its intensive and extensive
properties.

Feedback control. The traditional way to control a process is to measure the
variable that is to be controlled, compare its value with the desired value (the

 to the controller) and feed the difference (the error) into a feedback
controller that will change a manipulated variable to drive the controlled vari-
able back to the desired value. Information is thus “fed back” from the con-
trolled variable to a manipulated variable, as sketched in Fig. 1.7.

Feedforward control. The basic idea is shown in Fig. 1.8. The disturbance is
detected as it enters the process and an appropriate change is made in the
manipulated variable such that the controlled variable is held constant. Thus
we begin to take corrective action as soon as a disturbance entering the system
is detected instead of waiting (as we do with feedback control) for the dis-

turbance to propagate all the way through the process before a correction is

made.

Stability. A process is said to be unstable if its output becomes larger and
larger (either positively or negatively) as time increases. Examples are shown
in Fig. 1.9. No real system really does this, of course, because some constraint
will be met; for example, a control valve will completely shut or completely
open, or a safety valve will “pop.” A linear process is right at the limit of

Disturbance

I Manipulated variable Process
output

Measurement
device

 Feedforward 
controller

FIGURE 1.8
Feedforward control.
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FIGURE 19
Stability.

Time

stability if it oscillates, even when undisturbed, and the amplitude of the oscil-
lations does not decay.

Most processes are stable, i.e., stable with no controllers on the
system. One important and very interesting exception that we will study in
some detail is the exothermic chemical reactor which can be
unstable. All real processes can be made closedloop unstable (unstable when a
feedback controller is in the system) if the controller gain is made large
enough. Thus stability is of vital concern in feedback control systems.

The performance of a control system (its ability to control the process
tightly) usually increases as we increase the controller gain. However, we get
closer and closer to being closedloop unstable. Therefore the robustness of the
control system (its tolerance to changes in process parameters) decreases: a
small change will make the system unstable. Thus there is always a trade-off
between robustness and performance in control system design.

1.6 LAWS AND LANGUAGES
OF PROCESS CONTROL
1.6.1 Process Control Laws
There are several fundamental laws that have been developed in the process
control field as a result of many years of experience. Some of these may sound
similar to some of the laws attributed to Parkinson, but the process control laws
are not intended to be humorous.

(1) FIRST LAW. The simplest control system that will do the job is the best.
Complex elegant control systems look great on paper but soon end up on

“manual” in an industrial environment. Bigger is definitely not better in control
system design.
(2) SECOND LAW. You must understand the process before you can control it.
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No degree of sophistication in the control system (be it adaptive control,
Kalman filters, expert systems, etc.) will work if you do not know how your
process works. Many people have tried to use complex controllers to overcome
ignorance about the process fundamentals, and they have failed! Learn how the
process works before you start designing its control system.

1.6.2 Languages of Process Control

As you will see, several different approaches are used in this book to analyze the
dynamics of systems. Direct solution of the differential equations to give func-
tions of time is a “time domain” technique. Use of  transforms to charac-
terize the dynamics of systems is a  domain” technique. Frequency
response methods provide another approach to the problem.

All of these methods are useful because each has its advantages and dis-
advantages. They yield exactly the same results when applied to the same
problem. These various approaches are similar to the use of different languages
by people around the world. A table in English is described by the word
“TABLE.” In Russian a table is described by the word  In Chinese a
table is  In German it is “der Tisch.” But in any language a table is still
a table.

In the study of process dynamics and control we will use several languages.

English = time domain (differential equations, yielding exponential time
function solutions)

Russian =  domain (transfer functions)

Chinese = frequency domain (frequency response Bode and Nyquist plots)

Greek = state variables (matrix methods applies to differential equations)

German = z domain (sampled-data systems)

You will find the languages are not difficult to learn because the vocabulary that
is required is quite small. Only 8 to 10 “words” must be learned in each lan-
guage. Thus it is fairly easy to translate back and forth between the languages.

We will use “English” to solve some simple problems. But we will find that
more complex problems are easier to understand and solve using “Russian.” AS

problems get even more complex and realistic, the use of “Chinese” is required.
So we study in this book a number of very useful and practical process control
languages.

I have chosen the five languages listed above simply because I have had
some exposure to all of them over the years. Let me assure you that no political
or nationalistic motives are involved. If you would prefer French, Spanish,
Italian, Japanese, and Swahili, please feel free to make the appropriate substitu-
tions! My purpose in using the language metaphor is to try to break some of the
psychological barriers that students have to such things as  transforms
and frequency response. It is a pedagogical gimmick that I have used for over
two decades and have found it to be very effective with students.



PART

MATHEMATICAL
MODELS

OF
CHEMICAL

ENGINEERING
SYSTEMS

In the next two chapters we will develop dynamic mathematical models for
several important chemical engineering systems. The examples should illus-

trate the basic approach to the problem of mathematical modeling.
Mathematical modeling is very much an art. It takes experience, practice,

and brain power to be a good mathematical modeler. You will see a few models
developed in these chapters. You should be able to apply the same approaches to
your own process when the need arises. Just remember to always go back to
basics : mass, energy, and momentum balances applied in their time-varying form.
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CHAPTER

FUNDAMENTALS

2.1 INTRODUCTION
2.1.1 Uses of Mathematical Models
Without doubt, the most important result of developing a mathematical model of
a chemical engineering system is the understanding that is gained of what really
makes the process “tick.” This insight enables you to strip away from the
problem the many extraneous “confusion factors” and to get to the core of the
system. You can see more clearly the cause-and-effect relationships between
the variables.

Mathematical models can be useful in all phases of chemical engineering,
from research and development to plant operations, and even in business and
economic studies.

1. Research and development: determining chemical kinetic mechanisms and
parameters from laboratory or pilot-plant reaction data; exploring the effects
of different operating conditions for optimization and control studies; aiding

in scale-up calculations.

 Design: exploring the sizing and arrangement of processing equipment for
dynamic performance; studying the interactions of various parts of the
process, particularly when material recycle or heat integration is used; evalu-
ating alternative process and control structures and strategies; simulating
start-up, shutdown, and emergency situations and procedures.

15
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3. Plant operation: troubleshooting control and processing problems; aiding in
start-up and operator training; studying the effects of and the requirements for
expansion (bottleneck-removal) projects; optimizing plant operation. It is
usually much cheaper, safer, and faster to conduct the kinds of studies listed
above on a mathematical model than experimentally on an operating unit.
This is not to say that plant tests are not needed. As we will discuss later, they
are a vital part of confirming the validity of the model and of verifying impor-
tant ideas and recommendations that evolve from the model studies.

2.1.2 Scope of Coverage
We will discuss in this book only deterministic systems that can be described by
ordinary or partial differential equations. Most of the emphasis will be on lumped
systems (with one independent variable, time, described by ordinary differential
equations). Both English and SI units will be used. You need to be familiar with

both.

2.1.3 Principles of Formulation

A. BASIS. The bases for mathematical models are the fundamental physical and
chemical laws, such as the laws of conservation of mass, energy, and momentum.
To study dynamics we will use them in their general form with time derivatives
included.

B. ASSUMPTIONS. Probably the most vital role that the engineer plays in mod-
eling is in exercising his engineering judgment as to what assumptions can be
validly made. Obviously an extremely rigorous model that includes every phe-
nomenon down to microscopic detail would be so complex that it would take a
long time to develop and might be impractical to solve, even on the latest 
computers. An engineering compromise between a rigorous description and
getting an answer that is good enough is always required. This has been called
“optimum sloppiness.” It involves making as many simplifying assumptions as
are reasonable without “throwing out the baby with the bath water.” In practice,
this optimum usually corresponds to a model which is as complex as the avail-
able computing facilities will permit. More and more this is a personal computer.

The development of a model that incorporates the basic phenomena
occurring in the process requires a lot of skill, ingenuity, and practice. It is an
area where the creativity and innovativeness of the engineer is a key element in

the success of the process.
The assumptions that are made should be carefully considered and listed.

They impose limitations on the model that should always be kept in mind when
evaluating its predicted results.

C. MATHEMATICAL CONSISTENCY OF MODEL. Once all the equations of the
mathematical model have been written, it is usually a good idea, particularly with
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big, complex systems of equations, to make sure that the number of variables
equals the number of equations. The so-called “degrees of freedom” of the system
must be zero in order to obtain a solution. If this is not true, the system is
underspecified or overspecified and something is wrong with the formulation of
the problem. This kind of consistency check may seem trivial, but I can testify
from sad experience that it can save many hours of frustration, confusion, and
wasted computer time.

Checking to see that the units of all terms in all equations are consistent is
perhaps another trivial and obvious step, but one that is often forgotten. It is
essential to be particularly careful of the time units of parameters in dynamic
models. Any units can be used (seconds, minutes, hours, etc.), but they cannot be
mixed. We will use “minutes” in most of our examples, but it should be remem-

bered that many parameters are commonly on other time bases and need to be
converted appropriately, e.g., overall heat transfer coefficients in  or
velocity in m/s. Dynamic simulation results are frequently in error because the
engineer has forgotten a factor of “60” somewhere in the equations.

D. SOLUTION OF THE MODEL EQUATIONS. We will concern ourselves in
detail with this aspect of the model in Part II. However, the available solution
techniques and tools must be kept in mind as a mathematical model is developed.
An equation without any way to solve it is not worth much.

E. VERIFICATION. An important but often neglected part of developing a math-
ematical model is proving that the model describes the real-world situation. At
the design stage this sometimes cannot be done because the plant has not yet
been built. However, even in this situation there are usually either similar existing
plants or a pilot plant from which some experimental dynamic data can be
obtained.

The design of experiments to test the validity of a dynamic model can
sometimes be a real challenge and should be carefully thought out. We will talk
about dynamic testing techniques, such as pulse testing, in Chap. 14.

2.2 FUNDAMENTAL LAWS
In this section, some fundamental laws of physics and chemistry are reviewed in
their general time-dependent form, and their application to some simple chemical
systems is illustrated.

2.2.1 Continuity Equations
A. TOTAL CONTINUITY EQUATION (MASS BALANCE). The principle of the
conservation of mass when applied to a dynamic system says
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The units of this equation are mass per time. Only one total continuity equation
can be written for one system.

The normal steadystate design equation that we are accustomed to using
says that “what goes in, comes out.” The dynamic version of this says the same
thing with the addition of the world “eventually.”

The right-hand side of Eq. (2.1) will be either a partial derivative  or an
ordinary derivative of the mass inside the system with respect to the inde-

pendent variable t.

Example 2.1 Consider the tank of perfectly mixed liquid shown in Fig. 2.1 into
which flows a liquid stream at a volumetric rate of  or  and with
a density of  or  The volumetric holdup of liquid in the tank is 

 or  and its density is  The volumetric flow rate from the tank is F, and the
density of the outflowing stream is the same as that of the tank’s contents.

The system for which we want to write a total continuity equation is all the
liquid phase in the tank. We call this a macroscopic system, as opposed to a micro-
scopic system, since it is of definite and finite size. The mass balance is around the
whole tank, not just a small, differential element inside the tank.

 = time rate of change of 

The units of this equation are  or 

Since the liquid is perfectly mixed, the density is the same everywhere in the tank; it
does not vary with radial or axial position; i.e., there are no spatial gradients in
density in the tank. This is why we can use a macroscopic system. It also means that
there is only one independent variable, 

Since  and  are functions only of  an ordinary derivative is used in
(2.2).

Example 2.2. Fluid is flowing through a constant-diameter cylindrical pipe sketched
in Fig. 2.2. The flow is turbulent and therefore we can assume plug-flow conditions,
i.e., each “slice” of liquid flows down the pipe as a unit. There are no radial gra-
dients in velocity or any other properties. However, axial gradients can exist.

Density and velocity can change as the fluid flows along the axial or z direc-

tion. There are now two independent variables: time and position z. Density and
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+

FIGURE 2.2

Flow through a pipe.

velocity are functions of both  and  and  We want to apply the total
continuity equation [Eq.  to a system that consists of a small slice. The system

is now a “microscopic” one. The differential element is located at an arbitrary spot
z down the pipe. It is thick and has an area equal to the cross-sectional area of
the pipe A  or 

Time rate of change of mass inside system:

at
A dz is the volume of the system;  is the density. The units of this equation are

 or 
Mass flowing into system through boundary at z:

Notice that the units are still  = 
Mass flowing out of the system through boundary at z + dz:

The above expression for the flow at z + dz may be thought of as a Taylor series
expansion of a function around z. The value of the function at a spot dz away
from z is

If the dz is  the series can be truncated after the first derivative term. Letting

 =  gives Eq. (2.6).
Substituting these terms into Eq. (2.1) gives

at
 + 1

Canceling out the dz terms and assuming A is constant yield

 COMPONENT CONTINUITY EQUATIONS (COMPONENT BALANCES).

Unlike mass, chemical components are not conserved. If a reaction occurs inside
a system, the number of moles of an individual component will increase if it is a
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product of the reaction or decrease if it is a reactant. Therefore the component
continuity equation of thejth chemical species of the system says

Flow of moles ofjth flow of moles ofjth

component into system component out of system1
rate

+
of formation of moles of jth

component from chemical reactions 1
time rate of change of moles of jth

component inside system 1 (2.9)

The units of this equation are moles of component j per unit time.
The flows in and out can be both convective (due to bulk flow) and molecu-

lar (due to diffusion). We can write one component continuity equation for each
component in the system. If there are NC components, there are NC component
continuity equations for any one system. However, the one total mass balance
and these NC component balances are not all independent, since the sum of all
the moles times their respective molecular weights equals the total mass. There-
fore a given system has only NC independent continuity equations. We usually
use the total mass balance and NC  1 component balances. For example, in a
binary (two-component) system, there would be one total mass balance and one
component balance.

Example 2.3. Consider the same tank of perfectly mixed liquid that we used in
Example 2.1 except that a chemical reaction takes place in the liquid in the tank.

The system is now a CSTR (continuous stirred-tank reactor) as shown in Fig. 2.3.
Component A reacts irreversibly and at a specific reaction rate k to form product,
component B.

k
A - B

Let the concentration of component A in the inflowing feed stream be  (moles of

A per unit volume) and in the reactor Assuming a simple first-order reaction,
the rate of consumption of reactant A per unit volume will be directly proportional

to the instantaneous concentration of A in the tank. Filling in the terms in Eq. (2.9)
for a component balance on reactant A,

Flow of A into system = 

Flow of A out of system = 

Rate of formation of A from reaction = 

P O
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The minus sign comes from the fact that A is being consumed, not produced. The
units of all these terms must be the same: moles of A per unit time. Therefore the

 term must have these units, for example  of  Thus
the units of k in this system are 

Time rate of change of A inside tank = 

Combining all of the above gives

 = 
dt

We have used an ordinary derivative since is the only independent variable in this

lumped system. The units of this component continuity equation are moles of A per
unit time. The left-hand side of the equation is the dynamic term. The first two
terms on the right-hand side are the convective terms. The last term is the gener-
ation term.

Since the system is binary (components A and B), we could write another
component continuity equation for component B. Let  be the concentration of B
in moles of B per unit volume.

 =  + 
dt

Note the plus sign before the generation term since B is being produced by the
reaction. Alternatively we could use the total continuity equation [Eq.  since

 ,  , and are uniquely related by

(2.11)

where and are the molecular weights of components A and B, respectively.

Example 2.4. Suppose we have the same macroscopic system as above except that
now consecutive reactions occur. Reactant A goes to B at a specific reaction rate k,,
but B can react at a specific reaction rate to form a third component C.

 c

Assuming first-order reactions, the component continuity equations for com-
ponents A, B, and C are

dt

dt
(2.12)

dt
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The component concentrations are related to the density

(2.13)

Three component balances could be used or we could use two of the component
balances and a total mass balance.

Example 2.5. Instead of fluid flowing down a pipe as in Example 2.2, suppose the

pipe is a tubular reactor in which the same reaction A  B of Example 2.3 takes
place. As a slice of material moves down the length of the reactor the concentration
of reactant  decreases as A is consumed. Density velocity  and concentration

 can all vary with time and axial position  We still assume plug-flow conditions
so that there are no radial gradients in velocity, density, or concentration.

The concentration of A fed to the inlet of the reactor at z = 0 is defined as

C

The concentration of A in the reactor  at z =  is defined as

(2.14)

We now want to apply the component continuity equation for reactant A to a small

differential slice of width  as shown in Fig. 2.4. The inflow terms can be split into
two types: bulk flow and diffusion. Diffusion can occur because of the concentration
gradient in the axial direction. It is usually much less important than bulk flow in
most practical systems, but we include it here to see what it contributes to the
model. We will say that the diffusive flux of A,  (moles of A per unit time per unit

area), is given by a Fick’s law type of relationship

where  is a diffusion coefficient due to both diffusion and turbulence in the fluid

flow (so-called “eddy diffusivity”).  has units of length’ per unit time.
The terms in the general component continuity equation [Eq.  are:

Molar flow of A into boundary at z (bulk flow and diffusion)

(moles of 

 + 

FIGURE 2.4
Tubular reactor.
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Molar flow of A leaving system at boundary z + dz

=  +  + +

Rate of formation of A inside system = dz

Time rate of change of A inside system =
 dz 

Substituting into Eq. (2.9) gives

 =  + AN,)  + AN, +
 + AN,)

dz  Adz

 +  + 
A

Substituting Eq. (2.16) for 

(2.17)

The units of the equation are moles A per volume per time.

2.2.2 Energy Equation

The first law of thermodynamics puts forward the principle of conservation of

energy. Written for a general “open” system (where flow of material in and out of

the system can occur) it is

Flow of internal, kinetic, and flow of internal, kinetic, and

potential energy into system  energy out of system

by convection or diffusion by convection or diffusion 1
heat added to system by work done by system on

+ conduction, radiation, and  surroundings (shaft work and

reaction PV work)

time rate of change of internal, kinetic,

and potential energy inside system 1 (2.18)

Example 2.6. The CSTR system of Example 2.3 will be considered again, this time
with a cooling coil inside the tank that can remove the exothermic heat of reaction 

 . mol of A reacted or  mol of A reacted). We use the normal convention
that  is negative for an exothermic reaction and positive for an endothermic reac-

tion. The rate of heat generation (energy per time) due to reaction is the rate of
consumption of A times 

 = (2.19)



MATHEMATICAL MODELS OF CHEMICAL ENGINEERING 

F

CA
P FIGURE 2.5
T CSTR with heat removal.

The rate of heat removal from the reaction mass to the cooling coil is -Q (energy

per time). The temperature of the feed stream is  and the temperature in the
reactor is  or K). Writing Eq. (2.18) for this system,

+ + + + + +

+ = + + (2.20)

where  = internal energy (energy per unit mass)
 = kinetic energy (energy per unit mass)

 = potential energy (energy per unit mass)
 = shaft work done by system (energy per time)

P = pressure of system

= pressure of feed stream

Note that all the terms in Eq. (2.20) must have the same units (energy per time) so

the FP terms must use the appropriate conversion factor (778  in English
engineering units).

In the system shown in Fig. 2.5 there is no shaft work, so W = 0. If the inlet
and outlet flow velocities are not very high, the kinetic-energy term is negligible. If

the elevations of the inlet and outlet flows are about the same, the potential-energy
term is small. Thus Eq. (2.20) reduces to

d t

=  +  +  +  + Q (2.21)

where  is the specific volume  or  the reciprocal of the density.

Enthalpy, H or h, is defined:

(2.22)

We will use h for the  a liquid stream and H for the enthalpy of a vapor
stream. Thus, for the CSTR, Eq. (2.21) becomes

d t
(2.23)
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For liquids the  term is negligible compared to the  term, and we use the
time rate of change of the enthalpy of the system instead of the internal energy of

the system.

d t

The enthalpies are functions of composition, temperature, and pressure, but

primarily temperature. From thermodynamics, the heat capacities at constant pres-
sure,  , and at constant volume,  are

(2.25)

To illustrate that the energy is primarily influenced by temperature, let us
simplify the problem by assuming that the liquid enthalpy can be expressed as a

product of absolute temperature and an average heat capacity  or
 K) that is constant.

We will also assume that the densities of all the liquid streams are constant. With
these simplifications Eq. (2.24) becomes

 d t
 =  FT) + Q (2.26)

Example 2.7. To show what form the energy equation takes for a two-phase system,

consider the CSTR process shown in Fig. 2.6. Both a liquid product stream F and a
vapor product stream  (volumetric flow) are withdrawn from the vessel. The pres-
sure in the reactor is P. Vapor and liquid volumes are and V. The density and

temperature of the vapor phase are  and . The mole fraction of A in the vapor is
y. If the phases are in thermal equilibrium, the vapor and liquid temperatures are
equal (T = If the phases are in phase equilibrium, the liquid and vapor composi-
tions are related by Raoult’s law, a relative volatility relationship or some other

vapor-liquid equilibrium relationship (see Sec. 2.2.6). The enthalpy of the vapor
phase H  or  is a function of composition y, temperature and
pressure P. Neglecting kinetic-energy and potential-energy terms and the work term,

T

P

FIGURE 2.6
Two-phase CSTR with heat removal.
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and replacing internal energies with enthalpies in the time derivative, the energy

equation of the system (the vapor and liquid contents of the tank) becomes

d t
=  + Q (2.27)

In order to express this equation explicitly in terms of temperature, let us

again use a very simple form for  =  and an equally simple form for H.

H =  T + (2.28)

where  is an average heat of vaporization of the mixture. In a more rigorous
model  could be a function of temperature composition y, and pressure P.

Equation (2.27) becomes

d t
=

 T +  + Q (2.29)

Example 2.8. To illustrate the application of the energy equation to a microscopic
system, let us return to the plug-flow tubular reactor and now keep track of tem-
perature changes as the fluid flows down the pipe. We will again assume no radial
gradients in velocity, concentration, or temperature (a very poor assumption in

some strongly exothermic systems if the pipe diameter is not kept small). Suppose
that the reactor has a cooling jacket around it as shown in Fig. 2.7. Heat can be

transferred from the process fluid reactants and products at  the
metal wall of the reactor at temperature The heat is subsequently transferred to
the cooling water. For a complete description of the system we would need energy
equations for the process fluid, the metal wall, and the cooling water. Here we will
concern ourselves only with the process energy equation.

Looking at a little slice of the process fluid as our system, we can derive each

of the terms of Eq. (2.18). Potential-energy and kinetic-energy terms are assumed

negligible, and there is no work term. The simplified forms of the internal energy
and enthalpy are assumed. Diffusive flow is assumed negligible compared to bulk
flow. We will include the possibility for conduction of heat axially along the reactor
due to molecular or turbulent conduction.

Water

FIGURE 2.7
Jacketed tubular reactor.
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Flow of energy (enthalpy) into boundary at z due to bulk flow :

 T
lb Btu

with English engineering units of  = Btu/min
 lb,,, 

Flow of energy (enthalpy) out of boundary at z + dz:

P T +  dz

Heat generated by chemical reaction = -A dz

Heat transferred to metal wall = 

where  = heat transfer film coefficient, 
 = diameter of pipe, ft

Heat conduction into boundary at z =  A

where is a heat flux in the z direction due to conduction. We will use Fourier’s
law to express in terms of a temperature driving force:

 = (2.30)

where is an effective thermal conductivity with English engineering units of 
min “R.

Heat conduction out of boundary at z + dz =  A + 

Rate of change of internal energy (enthalpy) of the system =
 dz 

Combining all the above gives

 +  + 
at A + (2.31)

2.2.3 Equations of Motion
As any high school student, knows, Newton’s second law of motion says that

force is equal to mass times acceleration for a system with constant mass M.

(2.32)

where  = force, lbr

M = mass, lb,,,

a = acceleration,

 = conversion constant needed when English engineering units are used

to keep units consistent = 32.2 lb,,, 
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This is the basic relationship that is used in writing the equations of motion for a
system. In a slightly more general form, where mass can vary with time,

(2.33)

where  = velocity in the i direction,
= jth force acting in the i direction

Equation (2.33) says that the time rate of change of momentum in the i direction
(mass times velocity in the i direction) is equal to the net sum of the forces
pushing in the i direction. It can be thought of as a dynamic force balance. Or
more eloquently it is called the conservation ofmomentum.

In the real world there are three directions:  y, and z. Thus, three force
balances can be written for any system. Therefore, each system has three equa-
tions of motion (plus one total mass balance, one energy equation, and NC  1
component balances).

Instead of writing three equations of motion, it is often more convenient
(and always more elegant) to write the three equations as one vector equation.
We will not use the vector form in this book since all our examples will be simple
one-dimensional force balances. The field of fluid mechanics makes extensive use
of the conservation of momentum.

Example 2.9. The gravity-flow tank system described in Chap. 1 provides a simple
example of the application of the equations of motion to a macroscopic system.

Referring to Fig. 1.1, let the length of the exit line be  (ft) and its cross-sectional
area be A,  The vertical, cylindrical tank has a cross-sectional area of A,

The part of this process that is described by a force balance is the liquid
flowing through the pipe. It will have a mass equal to the volume of the pipe 
times the density of the liquid  This mass of liquid will have a velocity v  equal

to the volumetric flow divided by the cross-sectional area of the pipe. Remember we
have assumed plug-flow conditions and incompressible liquid, and therefore all the

liquid is moving at the same velocity, more or less like a solid rod. If the flow is
turbulent, this is not a bad assumption.

M = 

F (2.34)

The amount of liquid in the pipe will not change with time, but if we want to change
the rate of outflow, the velocity of the liquid must be changed. And to change the

velocity or the momentum of the liquid we must exert a force on the liquid.
The direction of interest in this problem is the horizontal, since the pipe is

assumed to be horizontal. The force pushing on the liquid at the left end of the pipe
is the hydraulic pressure force of the liquid in the tank.

Hydraulic force = (2.35)
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The units of this force are (in English engineering units):

32.2

32.2 lb,,, 
= lb,

where g is the acceleration due to gravity and is 32.2  if the tank is at sea level.
The static pressures in the tank and at the end of the pipe are the same, so we do

not have to include them.
The only force pushing in the opposite direction from right to left and

opposing the flow is the frictional force due to the viscosity of the liquid. If the flow
is turbulent, the frictional force will be proportional to the square of the velocity
and the length of the pipe.

Frictional force = (2.36)

Substituting these forces into Eq.  we get

1

 L

(2.37)

The sign of the frictional force is negative because it acts in the direction opposite
the flow. We have defined left to right as the positive direction.

Example 2.10. Probably the best contemporary example of a variable-mass system
would be the equations of motion for a space rocket whose mass decreases as fuel is

consumed. However, to stick with chemical engineering systems, let us consider the
problem sketched in Fig. 2.8. Petroleum pipelines are sometimes used for trans-
ferring several products from one location to another on a batch basis, i.e., one
product at a time. To reduce product contamination at the end of a batch transfer, a

leather ball or “pig” that just fits the pipe is inserted in one end of the line. Inert gas
is introduced behind the pig to push it through the line, thus purging the line of
whatever liquid is in it.

To write a force balance on the liquid still in the pipe as it is pushed out, we
must take into account the changing mass of material. Assume the pig is weightless
and frictionless compared with the liquid in the line. Let z be the axial position of
the pig at any time. The liquid is incompressible (density  and flows in plug flow.
It exerts a frictional force proportional to the square of its velocity and to the length
of pipe still containing liquid.

Frictional force = (2.38)

Liquid

FIGURE 2.8
Pipeline and pig.



MATHEMATICAL MODELS OF CHEMICAL ENGINEERING

The cross-sectional area of the pipe is A,. The mass of fluid in the pipe is

The pressure  gauge) of inert gas behind the pig is essentially con-
stant all the way down the pipeline. The tank into which the liquid dumps is at
atmospheric pressure. The pipeline is horizontal. A force balance in the horizontal z
direction yields

(2.39)

Substituting that v =  we get

Example 2.11. As an example of a force balance for a microscopic system, let us
look at the classic problem of the laminar flow of an incompressible, newtonian
liquid in a cylindrical pipe. By “newtonian” we mean that its shear force (resistance
that adjacent layers of fluid exhibit to flowing past each other) is proportional to the
shear rate or the velocity gradient.

(2.41)

where  = shear rate (shear force per unit area) acting in the z direction and per-
pendicular to the r axis,

 = velocity in the z direction, 

 = velocity gradient of  in the r direction

 = viscosity of fluid,  s

In many industries viscosity is reported in centipoise or poise. The conversion factor
is 6.72 x 

We will pick as our system a small, doughnut-shaped element, half of which is

shown in Fig. 2.9. Since the fluid is incompressible there is no radial flow of fluid, or
 = 0. The system is symmetrical with respect to the angular coordinate (around

the circumference of the pipe), and therefore we need consider only the two dimen-
sions r and z. The forces in the z direction acting on the element are

Forces acting left to right:

Shear force on face at r =  dz) with units of (2.42)

Pressure force on face at z = 

Forces acting right to left :

Shear force on face at r + dr =  dz  +  (2nr dz  dr

Pressure force on face at z + dz =  dr  +  (2nr dr  dz
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FIGURE 2.9
 flow in a pipe.

The rate of change of  of the system is

dz

Combining all the above gives

The term, or the pressure drop per foot of pipe, will be constant if the fluid is
incompressible. Let us call it  Substituting it and Eq. (2.41) into Eq. (2.44)
gives

(2.45)

2.2.4 Transport Equations
We have already used in the examples most of the laws governing the transfer of
energy, mass, and momentum. ese transport laws all have the form of a flux
(rate of transfer per unit area) proportional to a driving force (a gradient in
temperature, concentration, or velo  The proportionality constant is a 
cal property of the system (like thermal conductivity, diffusivity, or viscosity).

For transport on a molecular vel, the laws bear the familiar names of
Fourier,  and Newton.

Transfer relationships of a more m  overall form are also used; for
example, film  and overall  in heat transfer. Here the 

 in the bulk properties between two  is the driving force. The pro-
portionality constant is an overall transfer  Table 2.1 summarizes some
to the various relationships used in developing models.
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TABLE 2.1
Transport laws

Quantity Heat Mass Momentum

Flux 4

Molecular transport

Driving force

Law Fourier’s

Property Thermal Diffusivity

conductivity

Overall transport

Driving force AT

Relationship  = A C ,

Newton’s

Viscosity

AP

 Driving forces in terms of partial  and mole fractions are also

commonly used.

 The most common problem, determining pressure drops through pipes,

uses friction factor = (g, 

2.2.5 Equations of State
To write mathematical models we need equations that tell us how the physical
properties, primarily density and enthalpy, change with temperature, pressure,
and composition.

Liquid density = 

Vapor density =  = 
. .

 enthalpy =  = 

Vapor enthalpy =  = 

(2.46)

Occasionally these relationships have to be fairly complex to describe the system
accurately. But in many cases simplification can be made without sacrificing
much overall accuracy. We have already used some simple enthalpy equations in

the examples of energy balances.

The next level of complexity would be to make the  functions of temperature:

h  =  (2.48)
T O

A polynomial in T is often used for  .

C  =  +
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Then Eq. (2.48) becomes

h = 1 (2.50)

Of course, with mixtures of components the total enthalpy is needed. If 
mixing effects are negligible, the pure-component enthalpies can be averaged:

(2.51)

where  = mole fraction ofjth component
= molecular weight of jth component
= pure-component enthalpy of jth component, energy per unit mass

The denominator of Eq. (2.51) is the average molecular weight of the mixture.
Liquid densities can be assumed constant in many systems unless large

changes in composition and temperature occur. Vapor densities usually cannot
be considered invariant and some sort of PVT relationship is almost always
required. The simplest and most often used is the perfect-gas law :

PV = 

where  = absolute pressure  or kilopascals)
V = volume  or 

(2.52)

n = number of moles (lb  mol or  mol)
R = constant = 1545  mol  or 8.314  K
T = absolute temperature  or K)

Rearranging to get an equation for density  or  of a perfect gas
with a molecular weight M, we get

 M P
(2.53)

2.2.6 Equilibrium

The second law of thermodynamics is the basis for the equations that tell us the
conditions of a system when equilibrium conditions prevail.

A. CHEMICAL EQUILIBRIUM. Equilibrium occurs in a reacting system when

(2.54)

where  = stoichiometric  of the jth component with reactants having
a negative sign and products a positive sign

 = chemical potential of jth component
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The usual way to work with this equation is in terms of an equilibrium
constant for a reaction. For example, consider a reversible gas-phase reaction of
A to form B at a specific rate and B reacting back to A at a specific reaction
rate The stoichiometry of the reaction is such that  moles of A react to form

 moles of B.

Equation (2.54) says equilibrium will occur when

 = (2.56)

The chemical potentials for a

 =  + RT (2.57)
where  = standard chemical potential (or Gibbs free energy per mole) of the jth

component, which is a function of temperature only
 = partial pressure of the jth component

R = perfect-gas law constant
T = absolute temperature

Substituting into Eq.

 + RT  + RT  = 0

(2.58)

The right-hand side of this equation is a function of temperature only. The term
in parenthesis on the left-hand side is defined as the equilibrium constant 
and it tells us the equilibrium ratios of products and reactants.

(2.59)

B. PHASE EQUILIBRIUM. Equilibrium between two phases occurs when the
chemical potential of each component is the same in the two phases:

(2.60)
where  = chemical potential of the jth component in phase I

 = chemical potential of the jth component in phase II

Since the vast majority of chemical engineering systems involve liquid and
vapor phases, many vapor-liquid equilibrium relationships are used. They range
from the very simple to the very complex. Some of the most commonly used

relationships are listed below. More detailed treatments are presented in many
thermodynamics texts. Some of the basic concepts are introduced by  and
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Wenzel in Chemical Process Analysis: Mass and Energy Balances, Chaps. 6 and 7,
Prentice-Hall, 1988.

Basically we need a relationship that permits us to calculate the vapor com-
position if we know the liquid composition, or vice versa. The most common
problem is a bubblepoint calculation: calculate the temperature  and vapor
composition  given the pressure P and the liquid composition  This usually
involves a trial-and-error, iterative solution because the equations can be solved
explicitly only in the simplest cases. Sometimes we have bubblepoint calculations
that start from known values of  and T and want to find P and  This is
frequently easier than when pressure is known because the bubblepoint calcu-
lation is usually noniterative.

calculations must be made when we know the composition of the
vapor  and P (or T) and want to find the liquid composition  and T (or P).
Flash calculations must be made when we know neither  nor  and must
combine phase equilibrium relationships, component balance equations, and an
energy balance to solve for all the unknowns.

We will assume ideal vapor-phase behavior in our examples, i.e., the partial
pressure of the jth component in the vapor is equal to the total pressure P times
the mole fraction of the jth component in the vapor  (Dalton’s law):

Corrections may be required at high pressures.
In the liquid phase several approaches are widely used.

1. Raoult’s law. Liquids that obey Raoult’s are called ideal.

(2.61)

(2.62)

where is the vapor pressure of pure component j. Vapor pressures are func-
tions of temperature only. This dependence is often described by

(2.64)

 Relative volatility. The relative volatility  of component i to component j is
defined :

- - (2.65)

Relative volatilities are fairly constant in a number of systems. They are con-
venient so they are frequently used.
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In a binary system the relative volatility  of the more volatile 
 compared with the less volatile component is

 = (1  x)

Rearranging,

ax

 = 1 + (a  1)x
(2.66)

3.  values. Equilibrium vaporization ratios or  values are widely used, partic-
ularly in the petroleum industry.

(2.67)

The K’s are functions of temperature and composition, and to a lesser extent,
pressure.

4. Activity coefficients. For  liquids, Raoult’s law must be modified to
account for the nonideality in the liquid phase. The “fudge factors” used are
called activity coefficients.

NC

P  =  (2.68)

where  is the activity coefficient for the jth component. The activity 
 is equal to 1 if the component is ideal. The y’s are functions of composi-

tion and temperature

2.2.7 Chemical Kinetics

We will be modeling many chemical reactors, and we must be familiar with the
basic relationships and terminology used in describing the kinetics (rate of
reaction) of chemical reactions. For more details, consult one of the several excel-
lent texts in this field.

A. TEMPERATURE DEPENDENCE. The effect of temperature on
the specific reaction rate k is usually found to be exponential :

(2.69)

where k = specific reaction rate
a = preexponential factor
E  activation energy; shows the temperature dependence of the reaction

rate, i.e., the bigger E, the faster the increase in k with increasing tem-
perature  mol or  mol)

 = absolute temperature
R = perfect-gas constant = 1.99  mol  or 1.99  mol K
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This exponential temperature dependence represents one of the most severe
linearities in chemical engineering systems. Keep in mind that the “apparent”
temperature dependence of a reaction may not be exponential if the reaction is
mass-transfer limited, not chemical-rate limited. If both zones are encountered in
the operation of the reactor, the mathematical model must obviously include
both reaction-rate and mass-transfer effects.

B. LAW OF MASS ACTION. Using the conventional notation, we will define an
overall reaction rate  as the rate of change of moles of any component per

volume due to chemical reaction divided by that component’s stoichiometric
coefficient.

(2.70)

The stoichiometric coefficients  are positive for products of the reaction and
negative for reactants. Note that  is an intensive property and can be applied to
systems of any size.

For example, assume we are dealing with an irreversible reaction in which
components A and B react to form components C and D.

Then

k
 +  +  D

The law of mass action says that the overall reaction rate  will vary with tem-
perature (since  is temperature-dependent) and with the concentration of reac-
tants raised to some powers.

 = 

where  = concentration of component A

 = concentration of component B

(2.72)

The constants a and b are not, in general, equal to the stoichibmetric coefficients
 and  . The reaction is said to be first-order in A if  = 1. It is second-order in

A if a = 2. The constants a and b can be fractional numbers.

As indicated earlier, the units of the specific reaction rate  depend on the
order of the reaction. This is because the overall reaction rate  always has the
same units (moles per unit time per unit volume). For a first-order reaction of A
reacting to form B, the overall reaction rate  written for component A, would
have units of moles of

 = 

If  has units of moles of k must have units of 
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If the  reaction rate for the system above is second-order in A,

=

 still has units of moles of  Therefore k must have units of 
mol A.

Consider the reaction A + B  C. If the overall reaction rate is first-order
in both A and B,

 still has units of moles of  Therefore k must have units of 
mol B.

PROBLEMS
2.1. Write the component continuity equations describing the CSTR of Example 2.3 with:

(a) Simultaneous reactions (first-order, isothermal)

A - C

(b) Reversible (first-order, isothermal)

2.2. Write the component continuity equations for a tubular reactor as in Example 2.5
with consecutive reactions occurring:

A - B - C

2.3. Write the component continuity equations for a perfectly mixed batch reactor (no
inflow or outflow) with first-order isothermal reactions:

(a) Consecutive
(b) Simultaneous
(c) Reversible

2.4. Write the energy equation for the CSTR of Example 2.6 in which consecutive 
order reactions occur with exothermic heats of reaction  and 

A - B - C

2.5. Charlie Brown and Snoopy are sledding down a hill that is inclined  degrees from
horizontal. The total weight of Charlie, Snoopy, and the sled is M. The sled is essen-

tially frictionless but the air resistance of the sledders is proportional to the square of
their velocity. Write the equations describing their position x, relative to the top of
the hill (x = 0). Charlie likes to “belly flop,” so their initial velocity at the top of the
hill is  .

What would happen if Snoopy jumped off the sled halfway down the hill
without changing the air resistance?

26. An automatic bale tosser on the back of a farmer’s hay baler must throw a 

bale of hay 20 feet back into a wagon. If the bale leaves the tosser with a velocity  in



What value of  would minimize this acceleration force?

FUNDAMENTALS

a direction  = 45” above the horizontal, what must  be? If the tosser must acceler-
ate the bale from a dead start to  in 6 feet, how much force must be exerted?

initially

at rest
wagon

FIGURE P2.6

2.7. A mixture of two immiscible liquids is fed into a decanter. The heavier liquid a settles
to the bottom of the tank. The lighter liquid  forms a layer on the top. The two
interfaces are detected by floats and are controlled by manipulating the two flows 
and  .

 = 

 =  + h,)

The controllers increase or decrease the flows as the levels rise or fall.
The total feed rate is . The weight fraction of liquid a in the feed is  The

two densities and are constant.
Write the equations describing the dynamic behavior of this system.

Decanter

FIGURE P2.7
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OF
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OF
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3.1 INTRODUCTION
Even if you were only half awake when you read the preceding chapter, you
should have recognized that the equations developed in the examples constituted
parts of mathematical models. This chapter is devoted to more complete exam-
ples. We will start with simple systems and progress to more realistic and
complex processes. The most complex example will be a nonideal,
overflow, multicomponent distillation column with a very large number of equa-

tions needed for a rigorous description of the system.
It would be impossible to include in this book mathematical models for all

types of chemical engineering systems. The examples cover a number of very
commonly encountered pieces of equipment: tanks, reactors of several types, and
distillation columns (both continuous and batch). I hope that these specific exam-
ples (or case studies) of mathematical modeling will give you a good grasp of
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strategies and procedures so that you can apply them to your specific problem.
Remember, just go back to basics when faced with a new situation. Use the
dynamic mass and energy balances that apply to your system.

In each case we will set up all the equations required to describe the system.
We will delay any discussion of solving these equations until Part II. Our
purpose at this stage is to translate the important phenomena occurring in the
physical process into quantitative, mathematical equations.

3.2 SERIES OF ISOTHERMAL,
CONSTANT-HOLDUP CSTRs

The system is sketched in Fig. 3.1 and is a simple extension of the CSTR con-
sidered in Example 2.3. Product B is produced and reactant A is consumed in
each of the three perfectly mixed reactors by a first-order reaction occurring in
the liquid. For the moment let us assume that the temperatures and holdups
(volumes) of the three tanks can be different, but both temperatures and the
liquid volumes are assumed to be constant (isothermal and constant holdup).
Density is assumed constant throughout the system, which is a binary mixture of
A and B.

With these assumptions in mind, we are ready to formulate our model. If
the volume and density of each tank are constant, the total mass in each tank is
constant. Thus the total continuity equation for the first reactor is

 =o
dt

Likewise total mass balances on tanks 2 and 3 give

 =  =  =  F

where F is defined as the throughput
We want to keep track of the amounts of reactant A and product B in each

tank, so component continuity equations are needed. However, since the system
is binary and we know the total mass of material in each tank, only one com-
ponent continuity equation is required. Either B or A can be used. If we arbi-
trarily choose A, the equations describing the dynamic changes in the amounts of

“2 “3

C

FIGURE 3.1
Series of CSTRs.
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reactant A in each tank are (with units of kg  mol of 

 =  dt

 = 
 dt

 = 
 dt

The specific reaction rates are given by the Arrhenius equation

 = 1, 2, 3

If the temperatures in the reactors are different, the k’s are different. The  refers
to the stage number.

The volumes  can be pulled out of the time derivatives because they are
constant (see Sec. 3.3). The flows are all equal to F but can vary with time. An
energy equation is not required because we have assumed isothermal operation.
Any heat addition or heat removal required to keep the reactors at constant
temperatures could be calculated from a steadystate energy balance (zero time
derivatives of temperature).

The three first-order nonlinear ordinary differential equations given in Eqs.

(3.3) are the mathematical model of the system. The parameters that must be
known are  ,  , and . The variables that must be specified before
these equations can be solved are F and  “Specified” does mean that
they must be constant. They can be time-varying, but they must be known or
given functions of time. They are

The initial conditions of the three concentrations (their values at time equal
zero) must also be known.

Let us now check the degrees of freedom of the system. There are three
equations and, with the parameters and forcing functions specified, there are only
three unknowns or dependent variables:  and Consequently a
solution should be possible, as we will demonstrate in Chap. 5.

We will use this simple system in many subsequent parts of this book.
When we use it for controller design and stability analysis, we will use an even
simpler version. If the throughput F is constant and the holdups and tem-
peratures are the same in all three tanks, Eqs. (3.3) become

dt

dt
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where  = V/F with units of minutes.

There is only one forcing function or input variable,  .

3.3 WITH VARIABLE HOLDUPS
If the previous example is modified slightly to permit the volumes in each reactor
to vary with time, both total and component continuity equations are required
for each reactor. To show the effects of higher-order kinetics, assume the reaction
is now nth-order in reactant A.

Reactor 1:

dt

Reactor 2:

dt

Reactor 3 :

 = 
dt

 = 

Our mathematical model now contains six first-order nonlinear ordinary
differential equations. Parameters that must be known are k,, and n.
Initial conditions for all the dependent variables that are to be integrated must be

and . The forcing functions  and must
also be given.

Let us now check the degrees of freedom of this system. There are six equa-
tions. But there are nine unknowns:  , and
Clearly this system is not sufficiently specified and a solution could not be
obtained.

What have we missed in our modeling? A good plant operator could take
one look at the system and see what the problem is. We have not specified how
the flows out of the tanks are to be set. Physically there would probably be
control valves in the outlet lines to regulate the flows. How are these control
valves to be set? A common configuration is to have the level in the tank con-
trolled by the outflow, i.e., a level controller opens the control valve on the exit
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line to increase the outflow if the level in the tank increases. Thus there must be a
relationship between tank holdup and flow.

(3.9)
The  functions will describe the level controller and the control valve. These
three equations reduce the degrees of freedom to zero.

It might be worth noting that we could have considered the flow from the
third tank as the forcing function. Then the level in tank 3 would probably be
maintained by the flow into the tank, . The level in tank 2 would be controlled
by and tank 1 level by . We would still have three equations.

The reactors shown in Fig. 3.1 would operate at atmospheric pressure if
they were open to the atmosphere as sketched.  the reactors are not vented and
if no inert blanketing is assumed, they would run at the bubblepoint pressure for
the specified temperature and varying composition. Therefore the pressures could
be different in each reactor, and they would vary with time, even though tem-
peratures are assumed constant, as the  change.

3.4 TWO HEATED TANKS
As our next fairly simple system let us consider a process in which two energy
balances are needed to model the system. The flow rate F of oil passing through
two perfectly mixed tanks in series is constant at 90  The density  of the
oil is constant at 40  and its heat capacity  is 0.6  The volume
of the first tank  is constant at 450  and the volume of the second tank  is
constant at 90  The temperature of the oil entering the first tank is  and is
150°F at the initial steadystate. The temperatures in the two tanks are  and
They are both equal to 250°F at the initial steadystate. A heating coil in the first
tank uses steam to heat the oil. Let  be the heat addition rate in the first tank.

There is one energy balance for each tank, and each will be similar to Eq.
(2.26) except there is no reaction involved in this process.

Energy balance for tank 1:

 =  + 

Energy balance for tank 2:

d t = (3.11)

Since the throughput is constant = = = F. Since volumes, densities,
and heat capacities are all constant, Eqs. (3.10) and (3.11) can be simplified.

 = 
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Let’s check the degrees of freedom of this system. The parameter values that
are known are  , and F. The heat input to the first tank  would be
set by the position of the control valve in the steam line. In later chapters we will
use this example and have a temperature controller send a signal to the steam
valve to position it. Thus we are left with two dependent variables,  and 
and we have two equations. So the system is correctly specified.

3.5 GAS-PHASE, PRESSURIZED CSTR
Suppose a mixture of gases is fed into the reactor sketched in Fig. 3.2. The
reactor is filled with reacting gases which are perfectly mixed. A reversible reac-
tion occurs :

The forward reaction is  in A; the reverse reaction is first-order in B.
Note that the stoichiometric coefficient for A and the order of the reaction are
not the same. The mole fraction of reactant A in the reactor is y. The pressure
inside the vessel is  (absolute). Both  and y can vary with time. The volume of
the reactor  is constant.

 (control valve) into
another vessel which is held at a constant pressure  (absolute). The outflow will
vary with the pressure and the composition of the reactor. Flows through control
valves are discussed in more detail in Part III; here let us use the formula

(3.14)

 is the valve-sizing coefficient. Density varies with pressure and composition.

where M = average molecular weight
 = molecular weight of reactant A

 = molecular weight of product B
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The concentration of reactant in the reactor is

with units of moles of A per unit volume. The overall reaction rate for the
forward reaction is

The overall reaction rate for the reverse reaction is

With these fundamental relationships pinned down, we are ready to write
the total and component continuity equations.

Total continuity :

Component A continuity:

dt  + 

The 2 in the reaction terms comes from the stoichiometric coefficient of A.
There are five equations [Eqs. (3.14) through  that make up the math-

ematical model of this system. The parameters that must be known are
 R, and The forcing functions (or inputs) could be  and

 This leaves five unknowns (dependent variables):  , P, F, and y.

3.6 NONISOTHERMAL CSTR
In the reactors studied so far, we have shown the effects of variable holdups,
variable densities, and higher-order kinetics on the total and component conti-

nuity equations. Energy equations were not needed because we assumed isother-
mal operations. Let us now consider a system in which temperature can change
with time. An irreversible, exothermic reaction is carried out in a single perfectly
mixed CSTR as shown in Fig. 3.3.

k
A - B

The reaction is nth-order in reactant A and has a heat of reaction  mol
of A reacted). Negligible heat losses and constant densities are assumed.

To remove the heat of reaction, a cooling jacket surrounds the reactor.
Cooling water is added to the jacket at a volumetric flow rate and with an
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v

T

I
F

T
FIGURE 3.3

A - B Nonisothermal CSTR.

inlet temperature of  . The volume of water in the jacket  is constant. The
mass of the metal walls is assumed negligible so the “thermal inertia” of the
metal need not be considered. This is often a fairly good assumption because
the heat capacity of steel is only about 0.1  which is an order of mag-
nitude less than that of water.

A. PERFECTLY MIXED JACKET. We assume that the temperature
e in the jacket is The heat transfer  the process at 

rature T and the cooling water at temperature  is described by an 
heat transfer coefficient.

Q =

where Q = heat transfer rate
 = overall heat transfer coefficient
= heat transfer area

In general the heat transfer area  vary with the  in the reactor if
some area was not completely-d with reaction mass liquid at all times. The
equations describing the system are:

Reactor total continuity:

Reactor component A continuity :

dt

Reactor energy equation :

 = (3.20)



MATHEMATICAL MODELS OF CHEMICAL ENGINEERING SYSTEMS

Jacket energy equation :

 =  + 

where  = density of cooling water
 = enthalpy of process liquid
 = enthalpy of cooling water

 of constant densities makes  and 
thalpies in the time derivatives to replace internal energies,

A hydraulic- between reactor holdup and the flow out of the
reactor is also needed. A level controller is assumed to change the outflow as the
volume in the tank rises or falls: the higher the volume, the larger the outflow.
The outflow is shut off completely when the volume drops to a minimum value
Vm i n

F  =  (3.22)

The level controller is a proportional-only feedback controller.
Finally, we need enthalpy data to relate the h’s to compositions and tem-

peratures. Let us assume the simple forms

and

where  = heat capacity of the process liquid
 = heat capacity of the cooling water

(3.23)

Using Eqs. (3.23) and the Arrhenius relationship for k, the five equations
that describe the process are

dt
(3.24)

dt
(3.25)

 d t
 =  FT) (3.26)

= + (3.27)

F = (3.28)

Checking the degrees of freedom, we see that there are five equations and
five unknowns: V, F, and We must have initial conditions for these
five dependent variables. The forcing functions are ,  and  .

The parameters that must be known are a,  R, p, C,,  A,,  V,,
and If the heat transfer area varies with the reactor holdup it
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would be included as another variable, but we would also have another equation;
the relationship between area and holdup. If the reactor is a flat-bottomed verti-
cal cylinder with diameter  and if the jacket is only around the outside, not
around the bottom

(3.29)

We have assumed the overall heat transfer coefficient  is constant. It may be a
function of the coolant flow rate  or the composition of the reaction mass,
giving one more variable but also one more equation.

B. PLUG FLOW COOLING JACKET. In the model derived above, the cooling
water inside the jacket was assumed to be perfectly mixed. In many jacketed
vessels this is not a particularly good assumption. If the water flow rate is high
enough so that the water temperature does not change much as it goes through
the jacket, the mixing pattern makes little difference. However, if the water tem-
perature rise is significant and if the flow is more like plug flow than a perfect mix
(this would certainly be the case if a cooling coil is used inside the reactor instead
of a jacket), then an average jacket temperature may be used.

= 2
(3.30)

where is the outlet cooling-water temperature.
The average temperature is used in the heat transfer equation and to rep-

resent the enthalpy of jacket material. Equation (3.27) becomes

(3.31)

Equation (3.31) is integrated to obtain  at each instant in time, and Eq. (3.30)
is used to calculate , also as a function of time.

C.  JACKET MODEL. Another alternative is to  up the jacket
volume into a number of perfectly mixed “lumps” as shown in Fig. 3.4.

An energy equation is needed for&lump. Assuming four lumps 
volume and heat transfer area,  energy equations for the jacket:

dt =  +

 =  +

 =  +

(3.32)

 =  +dt



MATHEMATICAL MODELS OF CHEMICAL ENGINEERING

FIGURE 3.4

Lumped jacket model.

D.  METAL In some reactors, particularly
m-pressure  or smaller-scale  the mass of the metal walls and

its effects on the thermal dynamics  be considered. To be rigorous, the
energy equation for the wall  be a partial differential equation in time and
radial position. A less rinorous but frequently used approximation is to 
the mass of the metal and assume the metal is all at one temperature  This
assumption is a fairly  one when the wall is not too  the thermal
conductivity of the metal is large.

Then effective  and  film coefficients  and  are used as
in Fig. 3.5.

The three energy equations for the process are: ,

 at
=  FT) 

 + 

where  inside heat transfer film coefficient
 = outside heat transfer film coefficient

FIGURE 3.5

metal model.

(3.33)
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 = density of metal wall
 = heat capacity of metal wall
 = volume of metal wall
 = inside heat transfer area

A, = outside heat transfer area

3.7 SINGLE-COMPONENT VAPORIZER
 systems represent some of the most interesting and important operations

in chemical engineering processing and are among the most  to model. To
describe these systems rigorously, conservation equations must be written for
both the vapor and liquid phases. The basic problem is finding the rate of vapor-
ization of material from the liquid phase into the vapor phase. The equations
used to describe the boiling rate should be physically reasonable and mathemati-
cally convenient for solution.

Consider the vaporizer sketched in Fig. 3.6. Liquefied petroleum gas (LPG)
is fed into a pressurized tank to hold the liquid level in the tank. We will assume
that LPG is a pure component: propane. Vaporization of mixtures of com-
ponents is discussed in Sec. 3.8.

The liquid in the tank is assumed perfectly mixed. Heat is added at a rate Q
to hold the desired pressure in the tank by vaporizing the liquid at a rate 

(mass per time). Heat losses and the mass of the tank walls are assumed negligi-
ble. Gas is drawn off the top of the tank at a volumetric flow rate  is the
forcing function or load disturbance.

A. STEADYSTATE MODEL. The simplest model would neglect the dynamics of
both vapor and liquid phases and relate the gas rate  to the heat input by

= Q (3.34)

where  = enthalpy of vapor leaving tank  or 
 = enthalpy of liquid feed  or 

FIGURE 3.6

 vaporizer.
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B. LIQUID-PHASE DYNAMICS MODEL. A somewhat more realistic model is
obtained if we assume that the volume of the vapor phase is small enough to
make its dynamics negligible. If only a few moles of liquid have to be vaporized
to change the pressure in the vapor phase, we can assume that this pressure is
always equal to the vapor pressure of the liquid at any temperature (P =  and

=  An energy equation for the liquid phase gives the temperature (as a
function of time), and the vapor-pressure relationship gives the pressure in the
vaporizer at that temperature.

A total continuity equation for the liquid phase is also needed, plus the two
controller equations relating pressure to heat input and liquid level to feed flow
rate  . These feedback controller relationships will be expressed here simply as
functions. In later parts of this book we will discuss these functions in detail.

Q (3.35)
An equation of state for the vapor is needed to be able to calculate density

 from the pressure or temperature. Knowing any one property (T,  or  pins
down all the other properties since there is only one component, and two phases
are present in the tank. The perfect-gas law is used.

The liquid is assumed incompressible so that  =  and its internal
energy is T. The enthalpy of the vapor leaving the vaporizer is assumed to be
of the simple form: T  I,.
Total continuity :

Energy :

dt
State :

(3.38)

Vapor pressure :

Equations (3.35) to (3.39) give us six equations. Unknowns are Q,

and T.

C. LIQUID AND VAPOR DYNAMICS MODEL. If the dynamics of the vapor
phase cannot be neglected (if we have a large volume of vapor), total continuity
and energy equations must be written for the gas in the tank. The vapor leaving
the tank, , is no longer equal, dynamically, to the rate of vaporization  .



EXAMPLES OF MATHEMATICAL MODELS OF CHEMICAL ENGINEERING SYSTEMS 53

The key problem now is to find a simple and reasonable expression for the
boiling rate I have found in a number of simulations that a “mass-transfer”
type of equation can be conveniently employed. This kind of relationship also
makes physical sense. Liquid boils because, at some temperature (and composi-
tion if more than one component is present), it exerts a vapor pressure  greater
than the pressure  in the vapor phase above it. The driving force is this pres-
sure differential

 =  P”) (3.40)

where is the pseudo mass transfer coefficient. Naturally at equilibrium 
steadystate) = If we assume that the liquid and vapor are in equilibrium,
we are saying that is very large. When the equations are solved on a com-
puter, several values of can be used to test the effects of nonequilibrium
conditions.

The equations describing the system are:

Liquid phase
Total continuity:

Energy :

dt
Vapor pressure :

Vapor phase
Total continuity:

Energy :

State :

dt

 = RT,

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

where  = internal energy of liquid at temperature T
= enthalpy of vapor boiling off liquid

 = internal energy of vapor at temperature 
H  = enthalpy of vapor phase



MATHEMATICAL MODELS OF CHEMICAL ENGINEERING

Thermal-property data are needed to relate the enthalpies to temperatures.

We would then have 10 variables: Q,  and 
Counting Eqs. (3.35) and (3.40) to (3.46) we see there are only nine equations.
Something is missing. A moment’s reflection should generate the other relation-
ship, a physical constraint:  +  total volume of tank.

D. THERMAL EQUILIBRIUM MODEL. The previous case yields a model that is
about as rigorous as one can reasonably expect. A final model, not quite as
rigorous but usually quite adequate, is one in which thermal equilibrium between
liquid and vapor is assumed to hold at all times. More simply, the vapor and.
liquid temperatures are assumed equal to each other: T = . This eliminates the
need for an energy balance for the vapor phase. It probably works pretty well
because the sensible heat of the vapor is usually small compared with latent-heat
effects.

If the simple enthalpy relationships can be used, Eq. (3.42) becomes

 dt
(3 .47)

The simpler models discussed above (such as cases A and B) are usually
good enough for continuous-flow systems where the changes in liquid and vapor
holdups and temperatures are not very large. Batch systems may require the
more rigorous models (cases C and D) because of the big variations of most
variables.

3.8 MULTICOMPONENT FLASH DRUM
Let us look now at vapor-liquid systems with more than one component. A
liquid stream at high temperature and pressure is “flashed” into a drum, i.e., its
pressure is reduced as it flows through a restriction (valve) at the inlet of the
drum. This sudden expansion is irreversible and occurs at constant enthalpy. If it
were a reversible expansion, entropy (not enthalpy) would be conserved. If the
drum pressure is lower than the bubblepoint pressure of the feed at the feed
temperature, some of the liquid feed will vaporize.

Gas is drawn off the top of the drum through a control valve whose stem
position is set by a pressure controller (Fig. 3.7). Liquid comes off the bottom of
the tank on level control.

The pressure  before the pressure letdown valve is high enough to
prevent any vaporization of feed at its temperature and composition  (mole
fraction jth component). The forcing functions in this system are the feed tem-
perature feed rate F, and feed composition  Adiabatic conditions (no heat
losses) are assumed. The density of the liquid in the tank,  is assumed to be a
known function of temperature and composition.

(3.48)
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 Liquid

FIGURE 3.7
 drum.

The density  of the vapor in the drum is a known function of temperature T,
composition  and pressure P. If the perfect-gas law can be used,

 R T
(3.49)

where is the average molecular weight of the gas.

where is the molecular weight of thejth component.

(3.50)

A. STEADYSTATE The simplest model of this system is one that
neglects dynamics completely. Pressure is assumed constant, and the steadystate
total and component continuity equations and a steadystate energy balance are
used. Vapor and liquid phases are assumed to be in equilibrium.

Total continuity:

(3.51)

Component continuity:

 + 

Vapor-liquid equilibrium :

Energy equation :

Yj (3.53)

PO  =  + (3.54)
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Thermal properties :

 = (3.55)

The average molecular weights are calculated from the mole fractions
in the appropriate stream [see Eq.  The number of variables in the system

 9 +  . . . .  . 
 and H. Pressure  and all the feed properties are given. There are

NC  1 component balances [Eq.
There are a total of NC equilibrium equations. We can say that there are

NC equations like Eq. (3.53). This may bother some of you. Since the sum of the
y’s has to add up to 1, you may feel that there are only NC  1 equations for the
y’s. But even if you think about it this way, there is still one more equation:
The sum of the partial pressures has to add up to the total pressure. Thus, what-
ever way you want to look at it, there are NC phase equilibrium equations.

Total continuity
Energy
Component continuity
Vapor-liquid equilibrium
Densities of vapor and liquid
Thermal properties for liquid and

vapor streams
Average molecular weights

Number of
Equation equations
(3.5 1)  ,
(3.54) 1
(3.52) “NC-1
(3.53) N C
(3.48) and (3.49) 2

(3.55) 2

(3.50) 2

The system is specified by the algebraic equations listed above. This is just a
traditional steadystate “equilibrium-flash” calculation.

B. RIGOROUS MODEL. Dynamics can be included in a number of ways, with
varying degrees of rigor, by using models similar to those in Sec. 3.7. Let us
merely indicate how a rigorous model, like case C of Sec. 3.7, could be developed.
Figure 3.8 shows the system schematically.

An equilibrium-flash calculation (using the same equations as in case A
above) is made at each point in time to find the vapor and liquid flow rates and
properties immediately after the pressure letdown valve (the variables with the
primes:  ,  ,  . . . shown in Fig. 3.8). These two streams are then fed into
the vapor and liquid phases. The equations describing the two phases will be
similar to Eqs. (3.40) to (3.42) and (3.44) to (3.46) with the addition of (1) a

component vapor-liquid equilibrium equation to calculate  and (2) NC  1
component continuity equations for each phase. Controller equations relating 
to and  to complete the model.
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FIGURE 3.8

Dynamic flash drum.

C. PRACTICAL MODEL. A more workable dynamic model can be developed if
we ignore the dynamics of the vapor phase (as we did in case B of Sec. 3.7). The
vapor is assumed to be always in equilibrium with the liquid. The conservation
equations are written for the liquid phase only.

Total continuity :

dt
Component continuity :

d
PO

dt
(3.58)

Energy :

dt =

The NC vapor-liquid equilibrium equations [Eqs.  the three enthalpy
relationships [Eqs.  the two density equations [Eqs. (3.48) and  the
two molecular-weight equations [Eq.  and the feedback controller equa-

tions [Eqs.  are all needed. The total number of equations is 2NC + 9,
which equals the total number of variables:  . . 

Keep in mind that all the feed properties, or forcing functions, are given:

PO,

3.9 BATCH REACT&

Batch processes offer some of the most interesting and challenging problems in
modeling and control because of their inherent dynamic nature. Although most
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FIGURE 3.9
Batch reactor.

large-scale chemical engineering processes have traditionally been operated in a
continuous fashion, many batch processes are still used in the production of
smaller-volume specialty chemicals and pharmaceuticals. The batch chemical
reactor has inherent kinetic advantages over continuous reactors for some reac-
tions (primarily those with slow rate constants). The wide use of digital process
control computers has permitted automation and optimization of batch processes
and made them more efficient and less labor intensive.

Let us consider the batch reactor sketched in Fig. 3.9. Reactant is charged
into the vessel. Steam is fed into the jacket to bring the reaction mass up to a
desired temperature. Then cooling water must be added to the jacket to remove
the exothermic heat of reaction and to make the reactor temperature follow the
prescribed temperature-time curve. This temperature profile is fed into the tem-
perature controller as a  signal. The  varies with time.

First-order consecutive reactions take place in the reactor as time proceeds.
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The product that we want to make is component B. If we let the reaction go on
too long, too much of B will react to form undesired C; that is, the yield will be
low. If we stop the reaction too early, too little A will have reacted; i.e., the

conversion and yield will be low. Therefore there is an optimum batch time when
we should stop the reaction. This is often done by quenching it, i.e., cooling it

down quickly.
There may also be an optimum temperature profile. If the 

 of the specific reaction rates and are the same (if their activa-
tion energies are equal), the reaction should be run at the highest possible
temperature to minimize the batch time. This maximum temperature would be a
limit imposed by some constraint: maximum working temperature or pressure of
the equipment, further undesirable degradation or polymerization of products or
reactants at very high temperatures, etc.

If is more temperature-dependent than k,, we again want to run at the
highest possible temperature to favor the reaction to B. In both cases we must be

sure to stop the reaction at the right time so that the maximum amount of B is
recovered.

If is less temperature-dependent that the optimum temperature
profile is one that starts off at a high temperature to get the first reaction going
but then drops to prevent the loss of too much B. Figure 3.10 sketches typical
optimum temperature and concentration profiles. Also shown in Fig. 3.10 as the
dashed line is an example of an actual temperature that could be achieved in a
real reactor. The reaction mass must be heated up to  We will use the
optimum temperature profile as the  signal.

With this background, let us now derive a mathematical model for this
process. We will assume that the density of the reaction liquid is constant. The

FIGURE 3.10
Batch
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total continuity equation for the reaction mass, after the reactants have been
charged and the batch cycle begun, is

dt
(3.60)

There is no inflow and no outflow. Since p is constant, = 0. Therefore the
volume of liquid in the reactor is constant.

Component continuity for A:

Component continuity for B :

V  =  Vk, 

(3.61)

Kinetic equations :

(3.63)

Using a lumped model for the reactor metal wall and the simple enthalpy equa-
tion  = T, the energy equations for the reaction liquid and the metal wall
are :

Energy equation for process :

 =  Vk, 

Energy equation for metal wall :

 =  T)

(3.64)

where  and  are the exothermic heats of reaction for the two reactions.

Notice that when the reactor is heated with steam, is bigger than and
is bigger than T. When cooling with water, the temperature differentials have

the opposite sign. Keep in mind also that the outside film coefficient  is usually
significantly different for condensing steam and flowing cooling water.

This switching from heating to cooling is a pretty tricky operation, particu-
larly if one is trying to heat up to as fast as possible but cannot permit any
overshoot. A commonly used system is shown in Fig. 3.9. The temperature con-
troller keeps the steam valve (V-l) open and the cooling water valve (V-2) shut
during the heat-up. This is accomplished by using split-ranged valves, discussed
later in Part III. Also during the heat-up, the cooling-water outlet valve (V-3) is
kept closed and the condensate valve (V-4) is kept open.

When cooling is required, the temperature controller shuts the steam valve
and opens the cooling-water valve just enough to make the reactor temperature
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follow the setpoint. Valve  must be opened and valve V-4 must be shut when-
ever cooling water is added.

We will study in detail the simulation and control of this system later in
this book. Here let us simply say that there is a known relationship between the
error signal E (or the temperature  minus the reactor temperature) and
the volumetric flow rates of steam  and cooling water  .

 = (3.66)

To describe what is going on in the jacket we may need two different sets of
equations, depending on the stage: heating or cooling. We may even need to
consider a third stage: filling the jacket with cooling water. If the cooling-water
flow rate is high and/or the jacket volume is small, the time to fill the jacket may
be neglected.

A. HEATING PHASE. During heating, a total continuity equation and an energy
equation for the steam vapor may be needed, plus an equation of state for the
steam.

Total continuity:

(3.67)

where  = density of steam vapor in the jacket
 = volume of the jacket
 = density of incoming steam

= rate of condensation of steam (mass per time)

The liquid condensate is assumed to be immediately drawn off through a steam

trap.

Energy equation for steam vapor:

J dt
(3.68)

where  = internal energy of the steam in the jacket
= enthalpy of incoming steam

 = enthalpy of liquid condensate

The internal energy changes (sensible-heat effects) can usually be neglected com-
pared with the latent-heat effects. Thus a simple algebraic steadystate energy
equation can be used

(3.69)
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The equations of state for steam (or the steam tables) can be used to calcu-
late temperature  and pressure from density . For example, if the 
gas law and a simple vapor-pressure equation can be used,

(3.70)

where  = molecular weight of steam = 18

A, and  = vapor-pressure constants for water

Equation (3.70) can be solved (iteratively) for if  is known [from Eq.
Once is known, can be calculated from the vapor-pressure equation. It is

usually necessary to know in order to calculate the flow rate of steam through
the inlet valve since the rate depends on the pressure drop over the valve (unless
the flow through the valve is “critical”).

If the mass of the metal surrounding the jacket is significant, an energy
equation is required for it. We will assume it negligible.

In most jacketed reactors or steam-heated reboilers the volume occupied by
the steam is quite small compared to the volumetric flow rate of the steam vapor.
Therefore the dynamic response of the jacket is usually very fast, and simple
algebraic mass and energy balances can often be used. Steam flow rate is set
equal to condensate flow rate, which is calculated by iteratively solving the
transfer relationship (Q =  AT) and the valve flow equation for the pressure
in the jacket and the condensate flow rate.

B. COOLING PHASE. During the period when cooling water is flowing through
the jacket, only one energy equation for the jacket is required if we assume the
jacket is perfectly mixed.

 =  + (3.7 1)

where = temperature of cooling water in jacket
= density of water
 = heat capacity of water
= inlet cooling-water temperature

Checking the degrees of freedom of the system during the heating stage, we
have seven variables (C, ,  , T, ,  and  and seven equations [Eqs.

 and  During the cooling stage we
use Eq. (3.71) instead of Eqs.  and  but we have only instead

3.10 REACTOR WITH MASS TRANSFER
As indicated in our earlier discussions about kinetics in Chap. 2, chemical reac-
tors sometimes have mass-transfer limitations as well as chemical reaction-rate
limitations. Mass transfer can become limiting when components must be moved
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FIGURE 3.11
Gas-liquid bubble reactor.

from one phase into another phase, before or after reaction. As an example of the
phenomenon, let us consider the gas-liquid bubble reactor sketched in Fig. 3.11.

Reactant A is fed as a gas through a distributor into the bottom of the
liquid-filled reactor. A chemical reaction occurs between A and B in the liquid
phase to form a liquid product C. Reactant A must dissolve into the liquid before
it can react.

If this rate of mass transfer of the gas A to the liquid is slow, the concentration of
A in the liquid will be low since it is used up by the reaction as fast as it arrives.
Thus the reactor is mass-transfer limited.

If the rate of mass transfer of the gas to the liquid is fast, the reactant A
concentration will build up to some value as dictated by the steadystate reaction
conditions and the equilibrium solubility of A in the liquid. The reactor is
chemical-rate limited.

Notice that in the mass-transfer-limited region increasing or reducing the
concentration of reactant  will make little difference in the reaction rate (or the
reactor productivity) because the concentration of A in the liquid is so small.
Likewise, increasing the reactor temperature will not give an exponential increase
in reaction rate. The reaction rate may actually decrease with increasing tem-

perature because of a decrease in the equilibrium solubility of A at the gas-liquid
interface.
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Let us try to describe some of these phenomena quantitatively. For simplic-
ity, we will assume isothermal, constant-holdup, constant-pressure, and constant
density conditions and a perfectly mixed liquid phase. The gas feed bubbles are
assumed to be pure component A, which gives a constant equilibrium concentra-
tion of A at the gas-liquid interface of  (which would change if pressure and
temperature were not constant). The total mass-transfer area of the bubbles is

A and could depend on the gas feed rate A constant-mass-transfer

(with units of length per time) is used to give the flux of A into the liquid
through the liquid film as a function of the driving force.

 =  C,) ( 3 . 7 2 )

Mass transfer is usually limited by diffusion through the stagnant liquid film
because of the low liquid diffusivities.

We will assume the vapor-phase dynamics are very fast and that any
acted gas is vented off the top of the reactor.

 = (3.73)
P A

Component continuity for A :

dt

Component continuity for B:

Total continuity :

d t

(3.74)

(3.75)

(3.76)

Equations (3.72) through (3.76) give us five equations. Variables are 
 , , and . Forcing functions are F,, , and  .

3.11 IDEAL BINARY DISTILLATION COLUMN
Next to the ubiquitous CSTR, the distillation column is probably the most
popular and important process studied in the chemical engineering literature.
Distillation is used in many chemical processes for separating feed streams and
for purification of final and intermediate product streams.

Most columns handle multicomponent feeds. But many can be approx-
imated by binary or pseudobinary mixtures. For this example, however, we will
make several additional assumptions and idealizations that are sometimes valid
but more frequently are only crude approximations.
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The purpose of studying this simplified case first is to reduce the problem to
its most elementary form so that the basic structure of the equations can be
clearly seen. In the next example, a more realistic system will be modeled.

We will assume a binary system (two components) with constant relative
volatility throughout the column and theoretical (100 percent efficient) trays, i.e.,
the vapor leaving the tray is in equilibrium with the liquid on the tray. This

means the simple vapor-liquid equilibrium relationship can be used

 = 1 + (a 
(3.77)

where  = liquid composition on the nth tray (mole fraction more volatile
component)

 = vapor composition on the nth tray (mole fraction more volatile
component)

 = relative volatility

A single feed stream is fed as saturated liquid (at its bubblepoint) onto the
feed tray N,. See Fig. 3.12. Feed flow rate is F  and composition is z
(mole fraction more volatile component). The overhead vapor is totally con-
densed in a condenser and flows into the reflux drum, whose holdup of liquid is

(moles). The contents of the drum is assumed to be perfectly mixed with
composition  The liquid in the drum is at its bubblepoint. Reflux is pumped
back to the top tray  of the column at a rate R. Overhead distillate product
is removed at a rate D.

We will neglect any delay time (deadtime) in the vapor line from the top of
the column to the reflux drum and in the reflux line back to the top tray (in
industrial-scale columns this is usually a good assumption, but not in small-scale
laboratory columns). Notice that  is not equal, dynamically, to  The two
are equal only at steadystate.

At the base of the column, liquid bottoms product is removed at a rate 
and with a composition  . Vapor  is generated in a thermosiphon reboiler
at a rate  Liquid circulates from the bottom of the column through the tubes in
the vertical tube-in-shell reboiler because of the smaller density of the 
liquid mixture in the reboiler tubes. We will assume that the liquids in the
er and in the base of the column are perfectly mixed together and have the same
composition  and total holdup (moles). The circulation rates through
designed thermosiphon reboilers are quite high, so this assumption is usually a
good one. The composition of the vapor leaving the base of the column and
entering tray 1 is  . It is in equilibrium with the liquid with composition  .

The column contains a total of  theoretical trays. The liquid holdup on
each tray including the downcomer is . The liquid on each tray is assumed to
be perfectly mixed with composition x,. The holdup of the vapor is assumed to
be negligible throughout the system. Although the vapor volume is large, the
number of moles is usually small because the vapor density is so much smaller
than the liquid density. This assumption breaks down, of course, in high-pressure
columns.
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A further assumption we will make is that of equimolal overflow. If the
molar heats of vaporization of the two components are about the same, whenever
one mole of vapor condenses, it vaporizes a mole of liquid. Heat losses up the
column and temperature changes from tray to tray (sensible-heat effects) are
assumed negligible. These assumptions mean that the vapor and liquid rates
through the stripping and rectifying sections will be constant under steadystate
conditions. The “operating lines” on the familiar McCabe-Thiele diagram are
straight lines.

However, we are interested here in dynamic conditions. The assumptions
above, including negligible vapor holdup, mean that the vapor rate through all

F

Cooling
water

D

FIGURE 3.12
Binary distillation column.
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trays of the column is the same, dynamically as well as at steadystate.

Remember these V’s are not necessarily constant with time. The vapor  can
be manipulated dynamically. The mathematical effect of assuming equimolal

 is that we do not need an energy equation for each tray. This- is quite a
significant simplification.

The liquid rates throughout the’ column will not be the same dynamically.
They will depend on the fluid mechanics of the tray. Often a simple Francis weir
formula relationship is used to relate the liquid holdup on the tray (M,) to the
liquid flow rate leaving the tray

 = (3.78)

where = liquid flow rate over weir 
 = length of weir (ft)
 = height of liquid over weir (ft)

More rigorous relationships can be obtained from the detailed tray hydraulic
equations to include the effects of vapor rate, densities, compositions, etc. We will
assume a simple functional relationship between liquid holdup and liquid rate.

Finally, we will neglect the dynamics of the condenser and the reboiler. In
commercial-scale columns, the dynamic response of these heat exchangers is
usually  faster than the response of the column itself. In some systems,
however, the dynamics of this peripheral equipment are important and must be
included in the model.

With all these assumptions in mind, we are ready to write the equations
describing the system. Adopting the usual convention, our total continuity equa-

tions are written in terms of moles per unit time. This is kosher because no
chemical reaction is assumed to occur in the column.

Condenser and  Drum
Total continuity:

dt

Component continuity (more volatile component):

dt =  (R + 

Top Tray (n = 

Total continuity:

 = R 
dt

(3.80)

(3.81)

(3.82)
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Component continuity :

dt = +

Next to Top Tray (n = 1)

Total continuity:

 =dt NT

Component continuity

(3.83)

(3.84)

dt NT N T  +  

nth Tray

Total continuity:

Component continuity:

dt  + 

Feed Tray (n = 

 continuity:

dt
 +  F

Component continuity :

dt

First Tray (n = 1)

Total continuity :

 = 
dt

Component continuity :

(3.86)

(3.87)

(3.88)

 + FZ (3.89)

(3.90)

(3.91)
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Reboiler and Column Base

Total continuity:

dt
(3.92)

Component continuity :

d t
=  Bx,

Each tray and the column base have equilibrium equations 
Each tray also has a hydraulic equation [Eq.  We also need two equations
representing the level controllers on the column base and reflux drum shown in
Fig. 3.12.

 = (3.94)

Let us now examine the degrees of freedom of the system. The feed rate
and composition z are assumed to be given.

Number of variables :

Tray compositions  and 
Tray liquid flows 
Tray liquid holdups (M,)
Reflux drum composition
Reflux drum flows (R and D)
Reflux drum holdup (M,)

Base compositions  and
Base flows  and B)
Base holdup 

Number of equations :

Tray component continuity
Tray total continuity
Equilibrium (trays plus base)
Hydraulic
Level controllers

=
=

1
2
1

2
1

=

=
2

Reflux drum component continuity  1
Reflux drum total continuity  1
Base component continuity 1
Base total continuity 1

Equation
number
(3.87)
(3.86)
(3.77)
(3.79)
(3.94)
(3.8 1)
(3.80)
(3.93)
(3.92)

Therefore the system is underspecified by two equations. From a control
engineering viewpoint this means that there are only two variables that can be
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controlled (can be fixed). The two variables that must somehow be specified are
reflux flow R and vapor  (or heat input to the reboiler). They can be held
constant (an  system) or they can be changed by two controllers to try
to hold some other two variables constant. In a digital simulation of this column
in Part II we will assume that two feedback controllers adjust R and  to control
overhead and bottoms compositions  and  .

3.12 MULTICOMPONENT
DISTILLATION COLUMN
As a more realistic distillation example, let us now develop a mathematical model
for a multicomponent,  column with NC components, nonequimolal
overflow, and  trays. The assumptions that we will make are:

1.
2 .
3 .
4 .

Liquid on the tray is perfectly mixed and incompressible.

Tray vapor holdups are negligible.

Dynamics of the condenser and the reboiler will be neglected.

Vapor and liquid are in thermal equilibrium (same temperature) but not in

phase equilibrium. A Murphree vapor-phase  will be used to describe
the departure from equilibrium.

(3.96)

where  = composition of vapor in phase equilibrium with liquid on nth tray
with composition

 = actual composition of vapor leaving nth tray

 = actual composition of vapor entering nth tray
= Murphree vapor  forjth component on nth tray

Multiple feeds, both liquid and vapor, and sidestream drawoffs, both liquid
and vapor, are permitted. A general nth tray is sketched in Fig. 3.13. Nomencla-
ture is summarized in Table 3.1. The equations describing this tray are:

Total continuity (one per tray):

 =  +  +  + 
dt

(3.97)

Component continuity equations (NC  per tray):

dt  +  +  + 

(3.98)
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FIGURE 3.13
nth tray of multicomponent column.

Energy equation (one per tray):

dt  +

(3.99)

where the enthalpies have units of energy per mole.

Phase equilibrium (NC per tray):

(3.100)

An appropriate vapor-liquid equilibrium relationship, as discussed in Sec. 2.2.6,
must be used to find  Then Eq. (3.96) can be used to calculate the  for the
inefficient tray. The would be calculated from the two vapors entering the
tray:  and 

Additional equations include physical property relationships to get densities
and enthalpies, a vapor hydraulic equation to calculate vapor flow rates from
known tray pressure drops, and a liquid hydraulic relationship to get liquid flow

TABLE 3.1
Streams on nth tray

Flow rate Composition Temperature

L
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rates over the weirs from known tray holdups. We will defer any discussion of
the very real practical problems of solving this large number of equations until
Part II.

If we listed all the variables in this system and subtracted all the equations
describing it and all the parameters that are fixed (all feeds), we would find that
the degrees of freedom would be equal to the number of sidestreams plus two.
Thus if we have no sidestreams, there are only two degrees of freedom in this
multicomponent system. This is the same number that we found in the simple
binary column. Typically we would want to control the amount of heavy key
impurity in the distillate and the amount of light key impurity in the
bottoms

3.13 BATCH DISTILLATION WITH HOLDUP
Batch distillation is frequently used for small-volume products. One column can
be used to separate a multicomponent mixture instead of requiring NC  1 con-
tinuous columns. The energy consumption in batch distillation is usually higher
than in continuous, but with small-volume, high-value products energy costs
seldom dominate the economics.

Figure 3.14 shows a typical batch distillation column. Fresh feed is charged
into the still pot and heated until it begins to boil. The vapor works its way up
the column and is condensed in the condenser. The condensate liquid runs into

FIGURE 3.14
Batch distillation.
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the reflux drum. When a liquid level has been established in the drum, reflux is
pumped back to the top tray in the column.

The column is run on total reflux until the overhead distillate composition
of the lightest component (component 1) reaches its specification purity.
Then a distillate product, which is the lightest component, is withdrawn at some
rate. Eventually the amount of component 1 in the still pot gets very low and the

 purity of the distillate drops. There is a period of time when the distillate
contains too little of component 1 to be used for that product and also too little
of component 2 to be used for the next heavier product. Therefore a “slop” cut
must be withdrawn until  builds up to its specification. Then a second product
is withdrawn. Thus multiple products can be made from a single column.

The optimum design and operation of batch distillation columns are very
interesting problems. The process can run at varying pressures and reflux ratios
during each of the product and slop cuts. Optimum design of the columns
(diameter and number of trays) and optimum operation can be important in
reducing batch times, which results in higher capacity and/or improved product
quality (less time at high temperatures reduces thermal degradation).

Theoretical trays, equimolal overflow, and constant relative volatilities are
assumed. The total amount of material charged to the column is  (moles).
This material can be fresh feed with composition  or a mixture of fresh feed and
the slop cuts. The composition in the still pot at the beginning of the batch is

 The composition in the still pot at any point in time is  The instanta-
neous holdup in the still pot is Tray liquid holdup and reflux drum holdup
are assumed constant. The vapor  rate is constant at  (moles per hour).
The reflux drum, column trays, and still pot are all initially filled with material of

.  .
composition

The equations describing the batch distillation of a multicomponent
mixture are given below.

Still pot:

dt

dt

Tray n :

 = 
dt  + 1, j

(3.101)

(3.103)



MATHEMATICAL MODELS OF CHEMICAL ENGINEERING SYSTEMS

Tray  (top tray):

at
YNT. (3.106)

Reflux drum :

at  + 

(3.107)

(3.108)

R = V - D (3.109)

3.14  SYSTEMS

The control of  is a very important problem in many processes, particularly in
effluent wastewater treatment. The development and solution of mathematical
models of these systems is, therefore, a vital part of chemical engineering dynamic
modeling.

3.141 Equilibrium-Constant Models

The traditional approach is to keep track of the amounts of the various chemical
species in the system. At each point in time, the hydrogen ion concentration is
calculated by solving a set of simultaneous nonlinear algebraic equations that
result from the chemical equilibrium relationships for each dissociation reaction.

For example, suppose we have a typical wastewater  control system.
Several inlet feed streams with different chemical species, titration curves, and
levels are fed into a perfectly mixed tank. If the feed streams are acidic, some
source of OH- ions is used to bring the  up to the specification of seven. A
slurry of  and/or caustic  are usually used.

The equilibrium-constant method uses a dynamic model that keeps track of
all chemical species. Suppose, for example, that we have three dissociating acids
in the system. Let the concentration of acid HA at some point in time be 
This concentration includes the part that is dissociated, plus the part that is not
dissociated. The same quantity for acid HB is  and for acid C is Cc. These
three acids come into the system in the feed streams.
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These dissociation reactions are reversible and have different forward and reverse
rate constants, The equilibrium relationships for these three reactions are
expressed in terms of the equilibrium constants  ,  , and Kc.

(3.110)

(3.112)

To solve for the concentration of hydrogen ion [H’] at each point in time,
these three nonlinear algebraic equations must be solved simultaneously. Let

 = fraction of HA dissociated

y = fraction of HB dissociated

z = fraction of HC dissociated

Then

Concentration of  = x

Concentration of  = y

Concentration of  = z

Concentration of undissociated HA = 

Concentration of undissociated HB =  y

Concentration of undissociated HC = Cc  z

Concentration of  =  + y + z

(3.113)

These concentrations are substituted in Eqs. (3.110) to  giving three highly
nonlinear algebraic equations in three unknowns:  y, and z.

These nonlinear equations must be solved simultaneously at each point in
time. Usually an iterative method is used and sometimes convergence problems
occur. The complexity grows as the number of chemical species increases.

This modeling approach requires that the chemical species must be known
and their equilibrium constants must be known. In many actual plant situations,
this data is not available.

3.14.2 Titration-Curve Method

The information that is available in many chemical plants is a titration curve for
each stream to be neutralized. The method outlined below can be used in this
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situation. It involves only a simple iterative calculation for one unknown at each
point in time.

Let us assume that titration curves for the feed streams are known. These
can be the typical sharp curves for strong acids or the gradual curves for weak
acids, with or without buffering. The dynamic model keeps track of the amount
of each stream that is in the tank at any point in time. Let  be the concentra-
tion of the nth stream in the tank,  be the flow rate of that stream into the tank,
and  be the total flow rate of material leaving the tank.

If the volume of the liquid in the tank is constant, the outflow is the sum of
all the inflows. The  rates of caustic and lime slurry are usually negligible.
For three feed streams

 =  +  + (3.114)

The dynamic component balance for the nth stream is

dt

where  = volume of the tank.

The dynamic balance for the OH- ion in the system is

dt
(3.116)

where Con = concentration of OH- ions in the system
= total flow rate of OH- ion into the system in the caustic and lime

slurry streams
 = rate of OH- ion generation due to the dissolving of the solid

 particles

The rate of dissolution can be related to the particle size and the OH- concentra-
tion.

(3.117)

where and  are constants determined from the dissolution rate data for
solid  and  is the solid  concentration at any point in time.

The steps in the titration-curve method are:

1. At each point in time, all the  and Con are known.

2. Guess a value for  in the tank.

3. Use the titration curve for each stream to determine the amount of OH- ion
required for that stream to bring it up to the guess value of

4. Check to see if the total amount of OH- actually present (from Con) is equal
to the total amount required for all streams.

5. Reguess  if step 4 does not balance.
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The method involves a simple iteration on only one variable,  Simple
interval-halving convergence (see Chap. 4) can be used very effectively. The titra-
tion curves can be easily converted into simple functions to include in the com-
puter program. For example, straight-line sections can be used to interpolate
between data points.

This method has been applied with good success to a number of  pro-
cesses by Schnelle (Schnelle and Luyben, Proceedings of ISA 88, Houston,
October 1988).

PROBLEMS
3.1. A fluid of constant density  is pumped into a cone-shaped tank of total volume

The flow out of the bottom of the tank is proportional to the square root of

the height  of liquid in the tank. Derive the equations describing the system.

FIGURE P3.1

3.2. A perfect gas with molecular weight M flows at a mass flow rate into a cylinder
through a restriction. The flow rate is proportional to the square root of the pressure

drop over the restriction:

 = 

where  is the pressure in the cylinder and is the constant upstream pressure. The
system is isothermal. Inside the cylinder, a piston is forced to the right as the pres-
sure P builds up. A spring resists the movement of the piston with a force that is

proportional to the axial displacement x of the piston.

 = 

Pressure on the spring
side of the piston is

atmospheric.

FIGURE P3.2
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The piston is initially at  = 0 when the pressure in the cylinder is zero. The 
sectional area of the cylinder is A. Assume the piston has negligible mass and fric-

tion.
(a) Derive the equations describing the system.
b) What will the steadystate piston displacement be?

3.3. perfectly mixed, isothermal CSTR has an outlet weir. The flow rate over the weir
 proportional to the height of liquid over the weir,  to the 1.5 power. The weir

height is  . The cross-sectional area of the tank is A. Assume constant density.
A first-order reaction takes place in the tank:

k
A - B

Derive the equations describing the system.

V
CA

I

FIGURE P3.3

3.4. In order to ensure an adequate supply for the upcoming set-to with the Hatfields,

Grandpa McCoy has begun to process a new batch of his famous Liquid Lightning
moonshine. He begins by pumping the mash at a constant rate  into an empty
tank. In this tank the ethanol undergoes a first-order reaction to form a product that
is the source of the high potency of McCoy’s Liquid Lightning. Assuming that the

concentration of ethanol in the feed,  is constant and that the operation is iso-
thermal, derive the equations that describe how the concentration C of ethanol in
the tank and the volume  of liquid in the tank vary with time. Assume perfect
mixing and constant density.

35. A rotating-metal-drum heat exchanger is half submerged in a cool stream, with its
other half in a hot stream. The drum rotates at a constant angular velocity

Hot temp

FIGURE
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(radians per minute). Assume and are constant along their respective sections
of the circumference. The drum length is  thickness d, and radius R. Heat transfer

 in the heating and cooling zones are constant  and  Heat capac-
ity  and density of the metal drum are constant. Neglect radial temperature gra-
dients and assume steadystate operation.
(a) Write the equations describing the system.

 What are the appropriate boundary conditions?

3.6. nsider the system that has two stirred chemical reactors separated by a plug-flow
 of D seconds. Assume constant holdups  and  constant throughput

 constant density, isothermal operation at temperatures and and
order kinetics with simultaneous reactions:

A - B A - C

No reaction occurs in the plug-flow section.
Write the equations describing the system.

FIGURE P3.6

3.7. Consider the isothermal hydraulic system sketched below. A slightly compressible
polymer liquid is pumped by a constant-speed, positive displacement pump so that
the mass flow rate is constant. Liquid density is given by

 = PO + 

where  ,  and are constants,  is the density, and  is the pressure.
Liquid is pumped through three resistances where the pressure drop is pro-

portional to the square of the mass flow: AP = A surge tank of volume V is
located between  and and is liquid full. The pressure downstream of is
atmospheric.

(a) Derive the differential equation that gives the pressure in the tank as a func-
tion of time and 

(b) Find the steadystate value of tank pressure P.

Pump

FIGURE P3.7

 Develop the equations describing an “inverted” batch distillation column. This

system has a large reflux drum into which the feed is charged. This material is fed to

the top of the distillation column (which acts like a stripper). Vapor is generated in a
reboiler in the base. Heavy material is withdrawn from the bottom of the column.

Derive a mathematical model of this batch distillation system for the case
where the tray holdups cannot be neglected.
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3.9. An ice cube is dropped into a hot, perfectly mixed, insulated cup of coffee. Develop
the equations describing the dynamics of the system. List all assumptions and define

3.10. n  irreversible reaction

k
A - B

takes place in the liquid phase in a constant-volume reactor. The mixing is not

perfect. Observation of flow patterns indicates that a two-tank system with back
mixing, as shown in the sketch below, should approximate the imperfect mixing.

Assuming  and  are constant, write the equations describing the system.

FIGURE

3.11. he liquid in a jacketed, nonisothermal CSTR is stirred by an agitator whose mass is
 compared with the reaction mass. The mass of the reactor wall and the

mass of the jacket wall are also significant. Write the energy equations for the
system. Neglect radial temperature gradients in the agitator, reactor wall, and jacket

wall.

reaction 3A  2B + C is carried out in an isothermal semibatch reactor.
B is the desired product. Product C is a very volatile by-product that must

be vented off to prevent a pressure buildup in the reactor. Gaseous C is vented off

through a condenser to force any A and B back into the reactor to prevent loss of
reactant and product.

Assume  is pure C. The reaction is first-order in  The relative volatilities
of A and C to B are = 1.2 and  = 10. Assume perfect gases and constant

pressure. Write the equations describing the system. List all assumptions.

FIGURE P3.12

the equations describing a simple version of the petroleum industry’s 
cracking operation. There are two vessels as shown in Fig. P3.13.

is fed to the reactor where it reacts to form product B while 
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iting component C on the solid fluidized catalyst.

A  B + 

Spent catalyst is circulated to the regenerator where air is added to burn off C.

Combustion products are vented overhead, and regenerated catalyst is returned to
the reactor. Heat is added to or removed from the regenerator at a rate Q.

Your dynamic mathematical model should be based on the following assump-
tions :

(1) The perfect-gas law is obeyed in both vessels.

(2) Constant pressure is maintained in both vessels.
(3) Catalyst holdups in the reactor and in the regenerator are constant.
(4) Heat capacities of reactants and products are equal and constant in each vessel.

Catalyst heat capacity is also constant.
(5) Complete mixing occurs in each vessel.

Product Stack gas

Reactor

- - - - - -

Air

Reactor reaction:  C 

Regenerator reaction: C 

FIGURE P3.13

3.14. Flooded condensers and flooded reboilers are sometimes used on distillation
columns. In the sketch below, a liquid level is held in the condenser, covering some

of the tubes. Thus a variable amount of heat transfer area is available to condense
the vapor. Column pressure can be controlled by changing the distillate (or reflux)

 rate.
Write the equations describing the dynamics of the condenser.
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FIGURE P3.14

Cooling

wate r

3.15. When cooling jackets and internal cooling coils do not give enough heat transfer
area, a circulating cooling system is sometimes used. Process fluid from the reactor is
pumped through an external heat exchanger and back into the reactor. Cooling
water is added to the shell side of the heat exchanger at a rate  as set by the

temperature controller. The circulation rate through the heat exchanger is constant.
Assume that the shell side of the exchanger can be represented by two perfectly

mixed “lumps” in series and that the process fluid flows countercurrent to the water
flow, also through two perfectly mixed stages.

The reaction is irreversible and fist-order in reactant A:

k
A - B

The contents of the tank are perfectly mixed. Neglect reactor and heat-exchanger
metal.

Derive a dynamic mathematical model of this system.

T

FIGURE
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3.16. A semibatch reactor is run at constant temperature by varying the rate of addition of
one of the reactants, A. The irreversible, exothermic reaction is first order in reac-

tants A and B.

k
A + B - C

The tank is initially  to its 40 percent level with pure reactant B at a

concentration  . Maximum cooling-water flow is begun, and reactant A is slowly

added to the perfectly stirred vessel.
Write the equations describing the system. Without solving the equations, try

to sketch the  of.  and  with time during the batch cycle.

Cooling
waterwater

FIGURE P3.16FIGURE P3.16

3.17. Develop a mathematical model for the three-column train of distillation columns
sketched below. The feed to the first column is 400 kg  and contains four

components (1, 2, 3, and  each at 25 mol %. Most of the lightest component is
removed in the distillate of the first column, most of the next lightest in the second
column distillate and the final column separates the final two heavy components.
Assume constant relative volatilities throughout the system: and  The
condensers are total condensers and the reboilers are partial. Trays, column bases,
and reflux drums are perfectly mixed. Distillate flow rates are set by reflux drum

FIGURE P3.17
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level controllers. Reflux flows are fixed. Steam flows to the reboilers are set by
temperature controllers. Assume equimolal overflow, negligible vapor holdup, and
negligible condenser and reboiler dynamics. Use a linear liquid hydraulic relation-

ship

where  and  are the initial steadystate liquid rate and holdup and  is a con-
stant with units of seconds.

3.18. The rate of pulp lay-down  on a paper machine is controlled by controlling both

the pressure P and the height of slurry  in a feeder drum with cross-sectional area
A.  is proportional to the square root of the pressure at the exit slit. The air vent
rate G is proportional to the square root of the air pressure in the box P. Feedback
controllers set the inflow rates of air  and slurry  to hold P and  The system is

isothermal.
Derive a dynamic mathematical model describing the system.

Restriction

FIGURE P3.18

3.19. A wax filtration plant has six filters that operate in parallel, feeding from one

common feed tank. Each filter can handle 1000 gpm when running, but the filters
must be taken off-line every six hours for a cleaning procedure that takes ten
minutes. The operating schedule calls for one filter to be cleaned every hour.

How many gallons a day can the plant handle? If the flow rate into the feed
tank is held constant at this average flow rate, sketch how the liquid level in the feed
tank varies over a typical three-hour period.

3.20. Alkylation is used in many petroleum refineries to react unsaturated butylenes with
isobutane to form high octane  (alkylate). The reaction is carried out in a
two liquid-phase system: sulfuric acid/hydrocarbon.

The butylene feed stream is split and fed into each of a series of perfectly
mixed tanks (usually in one large vessel). This  addition of butylene and the
large excess of isobutane that is used both help to prevent undesirable reaction of
butylene molecules with each other to form high-boiling, low octane polymers. Low
temperature (40°F) also favors the desired  reaction.

The reaction is exothermic. One method of heat removal that is often used is
autorefrigeration: the heat of vaporization of the boiling hydrocarbon liquid soaks
up the heat of reaction.
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The two liquid phases are completely mixed in the agitated sections, but in the
last section the two phases are allowed to separate so that the acid can be recycled
and the hydrocarbon phase sent off to a distillation column for separation.

Derive a dynamic mathematical model of the reactor.

Vapor to 

Acid recycle

 po lymer

FIGURE

3.21. Benzene is nitrated in an isothermal CSTR in three sequential irreversible reactions:

Benzene + HNO,  nitrobenzene + 

Nitrobenzene + HNO,  dinitrobenzene +

Dinitrobenzene + HNO,  + 

Assuming each reaction is linearily dependent on the concentrations of each reac-
tant, derive a dynamic mathematical model of the system. There are two feed

streams, one pure benzene and one concentrated nitric acid (98 wt  Assume con-
stant densities and complete miscibility.





PART

II
COMPUTER

SIMULATION

In the next two chapters we will study computer simulation techniques for
solving some of the systems of equations we generated in the two preceding

chapters. A number of useful numerical methods are discussed in Chap. 4, includ-
ing numerical integration of ordinary differential equations. Several examples
are given in Chap. 5, starting with some simple systems and evolving into more
realistic and complex processes to illustrate how to handle large numbers of
equations.

Only digital simulation solutions for ordinary differential equations are pre-
sented. To present anything more than a very superficial treatment of simulation
techniques for partial differential equations would require more space than is
available in this book. This subject is covered in several texts. In many practical
problems, distributed systems are often broken up into a number of “lumps”
which can then be handled by ordinary differential equations.

87
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Our discussions will be limited to only the most important and useful
aspects of simulation. The techniques presented will be quite simple and unso-
phisticated, but I have found them to work just as well for most real systems as
those that are more mathematically elegant. They also have the added virtues of
being easy to understand and easy to program.

Some of the simple linear equations that we will simulate can, of course, be
solved analytically by the methods covered in Part III to obtain general solu-
tions. The nonlinear equations cannot, in general, be solved analytically, and
computer simulation is usually required to get a solution. Keep in mind,
however, that you must give the computer specific numerical values for param-
eters, initial conditions, and forcing functions. And you will get out of the com-
puter specific numerical values for the solution. You cannot get a general
solution in terms of arbitrary, unspecified inputs, parameters, etc., as you can
with an analytic solution.

A working knowledge of FORTRAN 77 digital programming language is
assumed and all programs are written in FORTRAN. Those who prefer other
languages will find the conversion fairly easy since the programs are simple trans-
lations of the equations into source code. All programs can be run on any type of
computer, personal computers or mainframes. The big multicomponent distilla-
tion column simulations require a lot of number crunching so are usually run on

a mainframe. Most of the other programs can be conveniently run on personal
computers.



CHAPTER

NUMERICAL
METHODS

4.1 INTRODUCTION
Digital simulation is a powerful tool for solving the equations describing chemi-
cal engineering systems. The principal difficulties are two: (1) solution of simulta-
neous nonlinear algebraic equations (usually done by some iterative method), and
(2) numerical integration of ordinary differential equations (using discrete finite-
difference equations to approximate continuous differential equations).

The accuracy and the numerical stability of these approximating equations

must be kept in mind. Both accuracy and stability are affected by the finite-
difference equation (or integration algorithm) employed, Many algorithms have
been proposed in the literature. Some work better (i.e., faster and therefore
cheaper for a specified degree of accuracy) on some problems than others. Unfor-
tunately there is no one algorithm that works best for all problems. However, as
we will discuss in more detail later, the simple first-order explicit Euler algorithm
is the best for a large number of engineering applications.

Over the years a number of digital simulation packages have been devel-
oped. In theory, these simulation languages relieve the engineer of knowing any-
thing about numerical integration. They automatically monitor errors and
stability and adjust the integration interval or step size to stay within some accu-
racy criterion. In theory, these packages make it easier for the engineer to set up
and solve problems.

In practice, however, these simulation languages have limited utility. In
their push for generality, they usually have become inefficient. The computer
execution time for a realistic engineering problem when run on one of these
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lation packages is usually significantly longer than when run on a FORTRAN,
BASIC, or PASCAL program written for the specific problem.

Proponents of these packages argue, however, that the setup and program-
ming time is reduced by using simulation languages. This may be true for the
engineer who doesn’t know any programming and uses the computer only very
occasionally and only for dynamic simulations. But almost all high school and
certainly all engineering graduates know some computer programming language.
So using a simulation package requires the engineer to learn a new language and
a new system. Since some language is already known and since the simple, easily
programmed numerical techniques work well, it has been my experience that it is
much better for the engineer to develop a specific program for the problem at
hand. Not only is it more computationally efficient, but it guarantees that the
engineer knows what is in the program and what the assumptions and techniques
are. This makes debugging when it doesn’t work and modifying it to handle new
situations much easier.

On the other hand, the use of special subroutines for doing specific calcu-
lations is highly recommended. The book by Franks (Modeling and Simulation in
Chemical Engineering, John Wiley and Son, Inc., 1972) contains a number of
useful subroutines. And of course there are usually extensive libraries of sub-
routines available at most locations such as the IMSL subroutines. These can be
called very conveniently from a user’s program.

4.2 COMPUTER PROGRAMMING
A comprehensive discussion of computer programming is beyond the scope of
this book. I assume that you know some computer programming language. All
the examples will use FORTRAN since it is the most widely used by practicing
chemical engineers.

However, it might be useful to make a few comments and give you a few
tips about programming. These thoughts are not coming from a computer scien-
tist who is interested in generating the most efficient and elegant code, but from
an engineer who is interested in solving problems.

Many people get all excited about including extensive comment statements
in their code. Some go so far as to say that you should have two lines of com-
ments for every one line of code. In my view this is ridiculous! If you use symbols

in your program that are the same as you use in the equations describing the
system, the code should be easy to follow. Some comment statements to point
out the various sections of the program are fine.

For example, in distillation simulations the distillate and bottoms composi-

tion should be called “XD(J)” and in the program. The tray composi-
tions should be called  where IV is the tray number starting from the
bottom and  is the component number. Many computer scientists put all
the compositions into one variable  and index it so that the distillate is

 the top tray is  etc. This gives a more compact program but
makes it much more difficult to understand the code.
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Another important practical problem is debugging. Almost always, you will
have some mistake in your program, either in coding or in logic. Always, repeat
always, put loop counters in any iterative loops. This is illustrated in the 
point calculation programs given later in this chapter. If the program is not
running, don’t just throw up your hands and quit. It takes a fair amount of
tenacity to get all the kinks out of some simulations. Maybe that’s why the Dutch
are pretty good at it.

When your program is not working correctly, the easiest thing to do is to
put into the program print statements at each step in the calculations so that you
can figure out what you have done wrong or where the coding or logic error is
located.

One of the most frustrating coding errors, and one that is the toughest to
find, is when you overfill an array. This usually just wipes out your program at
some spot where there is nothing wrong with the program, and many
FORTRAN compilers will not give a diagnostic warning of this problem. Be very
careful to check that all dimensioned variables have been adequately dimen-
sioned.

Subroutine arguments and COMMON statements can also be trouble-
some. Always make sure that the calls to a subroutine use the correct sequence of
arguments and that all COMMON statements in all subroutines are exactly the

 that in the main program.
For the experienced programmer, the above comments are trivial, but they

may save the beginner hours of frustration. The fun part of using the computer is
getting useful results from the program once it is working correctly, not in coding
and debugging.

43 ITERATIVE CONVERGENCE METHODS

One of the most common problems in digital simulation is the solution of simul-
taneous nonlinear algebraic equations. If these equations contain transcendental
functions, analytical solutions are impossible. Therefore, an iterative 
error procedure of some sort must be devised. If there is only one unknown, a
value for the solution is guessed. It is plugged into the equation or equations to
see if it satisfies them. If not, a new guess is made and the whole process is
repeated until the iteration converges (we hope) to the right value.

The key problem is to find a method for making the new guess that con-
verges rapidly to the correct answer. There are a host of techniques. Unfor-
tunately there is no best method for all equations. Some methods that converge
very rapidly for some equations will diverge for other equations; i.e., the series of
new guesses will oscillate around the correct solution with ever-increasing devi-
ations. This is one kind of numerical instability.

We will discuss only a few of the simplest and most useful methods. Fortu-
nately, in dynamic simulations, we start out from some converged initial 
state. At each instant in time, variables have changed very little from the values
they had a short time before. Thus we always are close to the correct solution.
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For this reason, the simple convergence methods are usually quite adequate for
dynamic simulations.

The problem is best understood by considering an example. One of the
most common iterative calculations is a vapor-liquid equilibrium bubblepoint
calculation.

Example 4.1. We are given the pressure  and the liquid composition x. We want to

find the bubblepoint temperature and the vapor composition as discussed in Sec.
2.2.6. For simplicity let us assume a binary system of components 1 and 2. Com-
ponent 1 is the more volatile, and the mole fraction of component 1 in the liquid is x
and in the vapor is y. Let us assume also that the system is ideal: Raoult’s and

Dalton’s laws apply.
The partial pressures of the two components  and  in the liquid and

vapor phases are :

In liquid:  =  = (1 

In vapor:  = (1 

where = vapor pressure of pure component j which is a function of only tem-
perature

 =  + 

Equating partial pressures in liquid and vapor phases gives

P =  + (1 (4.4)

Our convergence problem is to find the value of temperature T that will
satisfy Eq. (4.4). The procedure is as follows:

1. Guess a temperature T.
2. Calculate the vapor pressures of components 1 and 2 from Eq. (4.3).

3. Calculate a total pressure using Eq. (4.4).

4. Compare with the actual total pressure given, P. If it is sufficiently close to
P (perhaps using a relative convergence criterion of  the guess T is correct.

The vapor composition can then be calculated from Eq. (4.5).

5. If is greater than P, the guessed temperature was too high and we must
make another guess of T that is lower. If is too low, we must guess a
higher T.

Now let us discuss several ways of making a new guess for the example
above.
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43.1 Interval Halving
This technique is quite simple and easy to visualize and program. It is not very
rapid in converging to the correct solution, but it is rock-bottom stable (it won’t
blow up on you numerically). It works well in dynamic simulations because the
step size can be adjusted to correspond approximately to the rate at which the
variable is changing with time during the integration time step.

Figure 4.1 sketches the interval-halving procedure graphically. An initial
guess of temperature  is made.  is calculated from Eq. (4.6). Then  is
compared to P. A fixed increment in temperature AT is added to or subtracted
from the temperature guess, depending on whether  is greater or less than P.

We keep moving in the correct direction at this fixed step size until there is
a change in the sign of the term (P This means we have crossed over the
correct value of T. Then we back up halfway, i.e., we halve the increment AT.
With each successive iteration we again halve AT, always moving either up or
down in temperature.

Table 4.1 gives a little main program and a FORTRAN subroutine that
uses interval halving to perform this bubblepoint calculation. Known values of
and and an initial guess of temperature are supplied as arguments of the
subroutine. When the subroutine returns to the main program it supplies the
correct value of T and the calculated vapor composition y. The vapor-pressure
constants (Al and  for component 1 and A2 and B2 for component 2) are
calculated in the main program and transferred into the subroutine through the
COMMON statement. The specific chemical system used in the main program is
benzene-toluene at atmospheric pressure (P = 760  with the mole fraction
of benzene in the liquid phase (x) set at 0.50. Ideal VLE is assumed.

The initial guess of T can be either above or below the correct value. The
program takes fixed steps equal to one degree until it crosses the correct
value of T. The logic variables “FLAGM” and  are used to tell us
when the solution has been crossed. Then interval halving is begun.

P
.

Correct value T

Temperature

F’IGURE 4.1

Interval-halving convergence.
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TABLE 4.1
Example of iterative bubblepoint calculation using “interval-halving” algorithm

C
C MAIN PROGRAM SETS DIFFERENT VALUES FOR
C INITIAL GUESS OF TEMPERATURE
C AND DIFFERENT INITIAL STEP SIZES
C SPECIFIC CHEMICAL SYSTEM IS 
C AT 760 MM HG PRESSURE
C PROGRAM MAIN

COMMON
C CALCULATION OF VAPOR PRESSURE CONSTANTS FOR
C BENZENEANDTOLUENE
C DATA GIVEN AT 100 AND 125 DEGREES CELCIUS

C SET LIQUID COMPOSITION AND PRESSURE

3  X P

DO 100 

DO 50 
 TO,DTO

1  INITIAL TEMP GUESS INITIAL DT 

DT=DTO
CALL

 T,Y,LOOP
2 T = Y LOOP

50
100

STOP
END

C
C

SUBROUTINE BUBPT(X,T,DT,P,Y,LOOP)
COMMON

C TEMPERATURE ITERATION LOOP
100

 LOOP IN BUBPT SUBROUTINE’)
STOP

 + B2)
 + 
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TABLE 4.1 (continued)
C TEST FOR CONVERGENCE

IF(ABS(P-PCALC). LT.  TO 50
IF(P-PCALC)

C TEMPERATURE GUESS WAS TOO HIGH
20

T=T-DT

GO TO 100
C TEMPERATURE GUESS WAS TOO LOW

30

GO TO 100
50

RETURN
END

of calculations

X  0.50000 P = 760.00

INITIAL TEMP GUESS  80.00 INITIAL DT 
T = 92.20 Y = 0.71770 LOOP = 16

INITIAL TEMP GUESS  80.00 INITIAL DT 
T  92.20 Y  0.71770 LOOP  14

INITIAL TEMP GUESS  80.00 INITIAL DT 
T  92.20 Y  0.71770 LOOP  13

INITIAL TEMP GUESS  80.00 INITIAL DT 
T = 92.20 Y = 0.71770 LOOP  13

INITIAL TEMP GUESS  100.00 INITIAL DT 
T  92.20 Y = 0.71770 LOOP  13

INITIAL TEMP GUESS  100.00 INITIAL DT 
T  92.20 Y  0.71770 LOOP  12

INITIAL TEMP GUESS  100.00 INITIAL DT 
T  92.20 Y  0.71770 LOOP  12

INITIAL TEMP GUESS  100.00 INITIAL DT 
T  92.20 Y  0.71770 LOOP  13

INITIAL TEMP GUESS  120.00 INITIAL DT 
T  92.20 Y  0.71770 LOOP  23

INITIAL TEMP GUESS  120.00 INITIAL DT 
T  92.20 Y  0.71770 LOOP  17

INITIAL TEMP GUESS  120.00 INITIAL DT 
T  92.20 Y  0.71770 LOOP  15

INITIAL TEMP GUESS  120.00 INITIAL DT 
T = 92.20 Y 0.71770 LOOP = 14

2.00

4.00

8.00

16.00

2.00

4.00

8.00

16.00

2.00

4.00

8.00

16.00
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Clearly, the number of iterations to converge depends on how far the initial
guess is from the correct value and the size of the initial step. Table 4.1 gives

results for several initial guesses of temperature (TO) and several step sizes (DTO).
The interval-halving algorithm takes 10 to 20 iterations to converge to the
correct temperature.

Note the presence of a loop counter. LOOP is the number of times a new

guess has been made. If the iteration procedure diverges, the test for LOOP
greater than 100 will stop the program with an appropriate explanation of where
the problem is.

Interval halving can also be used when more than one unknown must be
found. For example, suppose there are two unknowns. Two interval-halving
loops could be used, one inside the other. With a fixed value of the outside
variable, the inside loop is converged first to find the inside variable. Then the
outside variable is changed, and the inside loop is reconverged. This procedure is
repeated until both unknown variables are found that satisfy all the required
equations.

Clearly this double-loop-iteration procedure can be very slow. However, for

some simple problems it is quite effective.

4.3.2 Newton-Raphson Method
This method is probably the most popular convergence method. It is somewhat
more complicated since it requires the evaluation of a derivative. It also can lead
to stability problems if the initial guess is poor and if the function is highly
nonlinear.

Newton-Raphson amounts to using the slope of the function curve to

extrapolate to the correct value. Using the bubblepoint problem as a specific
example, let us define the function

 =  P (4.7)

We want to find the value of T that  equal to zero; i.e., we want to find
the root of  We guess a value of temperature Then we evaluate the func-
tion at Next we evaluate the slope of the function at  =

 . Then from the geometry shown in Fig. 4.2 we can see that

Solving for  gives

(4.9)

 in Eq. (4.9) is the new guess of temperature. If the curve  were a straight
line, we would converge to the correct solution in just one iteration.
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T Newton-Raphson convergence.

Generalizing Eq.  we get the recursive iteration algorithm :

where  + = new guess of temperature
= old guess of temperature

 = value off,,, at T = 
 = value of the derivative off, at T = 

(4.10)

The technique requires the evaluation off  the derivative of the function
 with respect to temperature. In our bubblepoint example this can be

obtained analytically.

 = 
 +

(4.11)

If the function  so complex that an analytical derivative could not be
obtained explicitly, an approximate derivative would have to be calculated
numerically: make a small change in temperature AT, evaluate fat T + AT and
use the approximation

(4.12)

A digital computer program using Eqs. (4.10) and (4.11) is given in Table
4.2. The problem is the same bubblepoint calculation for benzene-toluene per-
formed by interval-halving in Table 4.1, and the same initial guesses are made of
temperature. The results given in Table 4.2 show that the Newton-Raphson algo-
rithm is much more effective in this problem than interval halving: only 4 to 5
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TABLE 4.2
Example of iterative bubblepoint calculation using  algorithm

C
C MAIN PROGRAM SETS DIFFERENT VALUES FOR INITIAL
C GUESS OF TEMPERATURE
C SPECIFIC CHEMICAL SYSTEM IS BENZENE/TOLUENE

AT 760 MM HG PRESSURE
C

PROGRAM MAIN
COMMON

C CALCULATION OF VAPOR PRESSURE CONSTANTS
C FORBENZENEANDTOLUENE
C DATA GIVEN AT 100 AND 125 DEGREES CELCIUS

C SET LIQUID COMPOSITION AND PRESSURE

3  X P

DO 100 
 TO

1  INITIAL TEMP GUESS 

CALL
 T,Y,LOOP

2 T Y LOOP = 
100

STOP
END

iterations are required with Newton-Raphson, compared to 10 to 20 with
interval-halving.

If the function is not as smooth and/or if the initial guess is not as close to
the solution, the Newton-Raphson method can diverge instead of converge.
Functions that are not monotonic are particularly troublesome, since the deriv-
ative approaching zero makes Eq. (4.10) blow up. Thus Newton-Raphson is a
very efficient algorithm but one that can give convergence problems. Sometimes
these difficulties can be overcome by constraining the size of the change permit-
ted to be made in the new guess.

Newton-Raphson can be fairly easily extended to iteration problems involv-
ing more than one variable. For example, suppose we have two
and  that depend on two variables  and  We want to find the values
of  and  that satisfy the two equations

 = 0  = 
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TABLE 4.2 (continued)
C

SUBROUTINE BUBPT(X,T,DT,P,Y,LOOP)
COMMON

C TEMPERATURE ITERATION LOOP
100

1  LOOP IN BUBPT SUBROUTINE’)
STOP

 + 
C TEST FOR CONVERGENCE

IF(ABS(P-PCALC). LT.  TO 50
F=PCALC-P

 + 

GO  100
50

RETURN
END

X  0.50000 P = 760.00

INITIAL TEMP GUESS  80.00
T  92.19 Y  0.71765 LOOP 4

INITIAL TEMP GUESS  100.00
T = 92.19 Y  0.71765 LOOP 4

INITIAL TEMP GUESS  120.00
T = 92.19 Y  0.71765 LOOP 5

Expanding each of these functions around the point  in a Taylor series
and truncating after the first derivative terms give

(4.13)

f  =
+

+  1 (4.14)
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equal to zero and solving for the new
 and  give

(4.15)

=
+

(4.16)

All the partial derivatives and the functions are evaluated at  and
Equations (4.15) and (4.16) give the iteration algorithm for reguessing the

two new values each time through the loop. Four partial derivatives must be
calculated, either analytically or numerically, at each iteration step.

Equations (4.13) and (4.14) can be written more compactly in matrix form.
We set the left sides of the equations equal to zero and call the changes in the
guessed variables Ax =  .

(4.17)

All the functions and the partial derivatives are evaluated at  and  The
2 x 2 matrix of partial derivatives is called thejacobian matrix.

 1 (4.18)

All of the terms in this matrix are just constants that are calculated at each
iteration.

The Ax’s can be calculated by solving the matrix equation

(4.19)

where is the inverse of the  matrix. We will discuss matrices in more detail
in Chap. 15, but this notation is presented here to indicate how easy it is to
extend the Newton-Raphson method to more than one variable. If there are three
unknowns, the  matrix contains nine partial derivative terms. If there are
N unknowns, the  matrix contains  terms.

4.3.3 False Position

This convergence technique is a combination of Newton-Raphson and interval
halving. An initial guess  is made, and the function&,,, is evaluated. A step is
taken in the correct direction to a new temperature  is evaluated. If
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TABLE 16.2 (continued)

C
SUBROUTINE PROCTF(GM,W,N,KP,TAU,D)
DIMENSION
C O M P L E X
REAL KP

DO 10
DO 10

10
+
RETURN
END

Results

W
-10.93861 -73.93397 -10.97331
-10.77362 -57.94015 -8.69403
-10.52296 -45.07131 -6.87520
-10.15061 -34.67506 -5.41860
-9.61544 -26.25261 -4.24563
-8.88105 -19.43858 -3.29489
-7.93375 -13.98019 -2.52193
-6.80296 -9.70591 -1.89904
-5.56933 -6.48106 -1.41125
-4.34690 -4.16391 -1.04679

1 .ooooo
1.25893
1.58489
1.99526
2.51189

-3.24441
-2.33036
-1.62209
-1.09771

-2.58527
-1.56020

Note that these eigenvalues are neither the  eigenvalues nor the 
loop eigenvalues of the system! They are eigenvalues of a completely different
matrix, not the or the matrices.

Characteristic loci plots for the Wood and Berry column are shown in Fig.
16.3. They show that the empirical controllers settings give a stable closedloop
system, but the ZN settings do not since the eigenvalue goes through the

 point.
A brief justification for the characteristic loci method (thanks to C. C. Yu) is

sketched below. For a more rigorous treatment see McFarland and Belletrutti

(Automatica 1973, Vol. 8, p. 455). We assume an  stable system so the
closedloop characteristic equation has no poles in the right half of the  plane.
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Wood and Berry

2

Gains = 0 .20
Resets 4 .44

Wood and Berry

- 2

- 0 . 0 4
2 .61

2

2 -

42

I I I
- 2 2

- 2 - - - 2

Gains = 0.96 - 0 . 1 9Resets = 3.25 9 .20 I

FIGURE 16.3

The closedloop characteristic equation for a multivariable closedloop
process is

+ = + =
Let us canonically transform the Q matrix into a diagonal matrix which has
as its diagonal elements the  of

= (16.11)
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where

where = ith eigenvalue 

(16.2)

Det  +  = 0

Det  +  0

Det  +  = 0

(Det  (Det  +  (Det  = 0 (16.13)

Since the  matrix is not singular, its determinant is not zero. And the determi-

nant of its inverse is also not zero. Thus the closedloop characteristic equation
becomes

 +

Det  +  = 0 = Det

I

0  + (16.14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . .  +

 +  +  + = (16.15)

Now, the argument (phase angle) of the product of a series of complex numbers is
the sum of the arguments of the individual numbers.

arg {Det  +  = arg (1 +  + arg (1 +  +  + arg (1 + (16.16)

If the argument of any of the (1 +  functions on the right-hand side of Eq.
(16.16) increases by  as  goes from 0 to  (i.e., encircles the origin), the
closedloop characteristic equation has a zero in the right half of the  plane.
Therefore the system is closedloop unstable. Instead of plotting (1 +  and
looking at encirclements of the origin, we plot just the and look at encircle-
ments of the  1,0) point.

16.1.4 Niederlinski Index
A fairly useful stability analysis method is the Niederlinski index. It can be used
to eliminate unworkable pairings of variables at an early stage in the design. The
settings of the controllers do not have to be known, but it applies only when
integral action is used in all loops. It uses only the steadystate gains of the
process transfer function matrix.

The method is a “necessary but not  condition” for stability of a
closedloop system with integral action. If the index is negative, the system will be
unstable for any controller settings (this is called “integral instability”). If the
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index is positive, the system may or may not be stable. Further analysis is neces-
sary.

Niederlinski index = NI = (16.17)

where  =  = matrix of steadystate gains from the process 
transfer function

 = diagonal elements in steadystate gain matrix

Example 16.3. Calculate the Niederlinski index for the Wood and Berry column.

(16.18)

 Det 

 19.4) 
(16.19)

Since the NI is positive, the closedloop system with the specified pairing may be
s t a b l e .

Notice that the pairing assumes distillate composition  is controlled by
reflux R and bottoms composition  is controlled by vapor V.

If the pairing had been reversed, the steadystate gain matrix would be

(16.20)

(16.21)

and the NI for this pairing would be

 Det (-18.9X6.6)  19.4)

 =

= -0.991

Therefore, the pairing of  with  and  with  gives a closedloop system that is
“integrally unstable” for any controller tuning.

16.2 RESILIENCY
Some processes are easier to control than others. Some choices of manipulated
and controlled variables produce systems that are easier to control than others.
This inherent property of ease of controllability is called resiliency.

Morari (Chemical Eng. Science, 1983, Vol. 38,  1881) developed a very

useful measure of this property. The Morari resiliency index (MRI) gives an indi-
cation of the inherent controllability of a process. It depends on the controlled
and manipulated variables, but it does not depend on the pairing of these 
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 or on the tuning of the controllers. Thus it is a useful tool for comparing

alternative processes and alternative choices of manipulated variables.

The MRI is the minimum singular value of the process  transfer

function matrix  It can be evaluated over a range of frequencies  or just

at zero frequency. If the latter case, only the steadystate gain matrix  is needed.

MRI = (16.22)

The larger the value of the MRI, the more controllable or resilient the

process. Without going into an elaborate mathematical proof, we can intuitively

understand why a big MRI is good. The larger the minimum singular value of a

matrix, the farther it is from being singular and the easier it is to find its inverse.

Now a feedback controller is an approximation of the inverse of the process.

Remember back in Chap. 11 where we discussed Internal Model Control and

showed that perfect control could be achieved if we could make the controller the

inverse of the plant. Thus the more invertible the plant, the easier it is to build a

controller that does a good control job.

Example 16.4. Calculate the MRI for the Wood and Berry column at zero fre-
quency.

We use Eq. (15.44) for the singular values and select the smallest for the MRI.

(16.23)

To get the eigenvalues of this matrix we solve the equation Det  = 0

 207.4) 369.96

369.96 733.57)1 =  15,272 = 0

A = 916.19, 16.52

Therefore the minimum singular value of  is  = 4.06 = MRI.

Example 16.5. Yu and  (Ind. Eng. Chem. Process Des. Dev., 1986, Vol. 25, p.

498) give the following steadystate gain matrices for three alternative choices of
manipulated variables: reflux and vapor  (R  distillate and vapor 

(D  V), and  ratio and vapor  (RR  V).

R - V D - V R R V

G 16.3 -2.3 1.5

G  18.0 1.04  1.12
G  26.2 3.1  2.06
G 28.63 1.8 4.73

Calculate the  for each choice of manipulated variables.
Using Eq.  we calculate  for each system: R  V = 0.114,

D  V = 1.86, and RR  V = 0.89. Based on these results, the D  V system should

be easier to control (more resilient).
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One important aspect of the MRI calculations should be emphasized at this
point. The singular values depend on the scaling use in the steadystate gains of
the transfer functions. If different engineering units are used for the gains, differ-
ent singular values will be calculated. For example, as we change from time units
of minutes to hours or change from temperature units in Fahrenheit to Celsius,
the values of the singular values will change. Thus the comparison of alternative
control structures and processes can be obscured by this effect.

The practical solution to the problem is to always use dimensionless gains
in the transfer functions. The gains with engineering units should be divided by
the appropriate transmitter spans and multiplied by the appropriate valve gains.
Typical transmitter spans are  50 gpm, 250 psig, 2 mol % benzene, and the
like. Typical valve gains are perhaps twice the normal steadystate flow rate of the
manipulated variable. The slope of the installed characteristics of the control
valve at the steadystate operating conditions should be used. Thus the gains that
should be used are those that the control system will see. It gets inputs in  or
psig from transmitters and puts out  or psig to valves or to flow controller
setpoints.

16.3 INTERACTION
Interaction among control loops in a multivariable system has been the subject of
much research over the last 20 years. Various types of decouplcrs were explored
to separate the loops. Rosenbrock presented the inverse Nyquist array  to
quantify the amount of interaction. Bristol, Shinskey, and  developed the
relative gain array (RGA) as an index of loop interaction.

All of this work was based on the premise that interaction was undesirable.
This is true for  disturbances. One would like to be able to change a

 in one loop without affecting the other loops. And if the loops do not
interact, each individual loop can be tuned by itself and the whole system should
be stable if each individual loop is stable.

Unfortunately much of this interaction analysis work has clouded the issue
of how to design an effective control system for a multivariable process. In most
process control applications the problem is not  responses but load
responses. We want a system that holds the process at the desired values in the
face of load disturbances. Interaction is therefore not necessarily bad, and in fact
in some systems it helps in rejecting the effects of load disturbances. Niederlinski

 1971, Vol. 17, p. 1261) showed in an early paper that the use of

plers made the load rejection worse.
Therefore the discussions of the RGA,  and decoupling techniques will

be quite brief. I include them, not because they are all that useful, but because
they are part of the history of multivariable control. You should be aware of
what they are and of their limitations.
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16.3.1 Relative Gain Array (Bristol Array)
Undoubtedly the most discussed method for studying interaction is the RGA. It
was proposed by Bristol (IEEE Trans. Autom. Control 1966, p. 133) and
has been extensively applied (and in my opinion, often misapplied) by many
workers. Detailed discussions are presented by (Process Control
Systems, McGraw-Hill, New York, 1967) and (Interaction Analysis,
Instr.  America, Research Triangle Park, N.C., 1983).

The RGA has the advantage of being easy to calculate  requires

steadystate gain information. Let’s define it, give some examples, show how it is
used, and point out its limitations.

A. DEFINITION. The RGA is a matrix of numbers. The ijth element in the array
is called  It is the ratio of the steadystate gain between the ith controlled
variable and the jth manipulated variable when all other manipulated variables
are constant, divided by the steadystate gain between the same two variables
when all other controlled variables are constant.

(16.24)

For example, suppose we have a 2 x 2 system with the steadystate gains  .

= +
= + (16.25)

For this system, the gain between  and  when  is constant is

Cl =

The gain between  and when  is constant  0) is found from solving
the equations

=

 =  + (16.26)

= +

K 1
K P22 1

(16.27)

(16.28)
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Therefore the  term in the RGA is

 = (16.29)

(16.30)

Example 16.6. Calculate the element of the RGA for the Wood and Berry

column.

1 1
 =

1  = 1 
= 2.01

Equation (16.30) applies to only a 2 x 2 system. The elements of the RGA

can be calculated for any size system by using the following equation.

 =  element of  element of (16.31)

Note that Eq. (16.31) does not say that we take the  element of the product of

the  and  matrices.

Example 16.7. Use Eq. (16.31) to calculate all of the elements of the Wood and
Berry column.

= 2.01

This is the same result we obtained using Eq. (16.30).

(16.32)

Note that the sum of the elements in each row is 1. The sum of the elements in each
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column is also 1. This property holds for any RGA, so in the 2 x 2 case we only
have to calculate one element.

Example 16.8. Calculate the RGA for the 3 x 3 system studied by Ogunnaike and

Ray  1979, Vol. 25, p. 1043).

TABLE 16.3

6.7s  1 8.64s + 1

3.25s + 1  + 1

8.15s + 1 10.9s + 1

0.66 -0.61

1.11 -2.36

34.68 46.2

9.06s + 1

7.09s + 1

 + 

(3.89s +  + 1)

-0.0049

-0.012 1
0.87

RGA for the Ogunnaike and Ray column
REAL
COMPLEX
DIMENSION

C PROCESS STEADYSTATE GAIN DATA
DATA
DATA
DATA

C SET PARAMETERS FOR IMSL SUBROUTINE

10 RGA FOR OR  COLUMN’)
DO 30 
DO 30 

30  CMPLX(KP(I,J),O.)
CALL
CALL
CALL

CCALCULATEEACHBETAELEMENTOFTHERGA
DO 40 
DO 40 

40
DO 50 

50
2

STOP
END
Results of

RGA FOR OR  COLUMN
1.962

1.892
1.519

(16.33)
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The program given in Table 16.3 uses Equation 16.31 to calculate the elements of
the 3 x 3 RGA matrix. The IMSL subroutine  is used to get the inverse of
the matrix. The other subroutines are from Chapter 15. The results are

1.96 -0.66 -0.30

RGA = -0.67 1.89 -0.221 (16.34)

-0.29 -0.23 1.52

Note that the sums of the elements in all rows and all columns are 1.

B. USES AND LIMITATIONS. The elements in the RGA can be numbers that

vary from very large negative values to very large positive values. The closer the

number is to 1, the less difference closing the other loop makes on the loop being

considered. Therefore there should be less interaction, so the proponents of the

RGA claim that variables should be paired so that they have RGA elements near
1. Numbers around 0.5 indicate interaction. Numbers that are very large indicate
interaction. Numbers that are negative indicate that the sign of the controller
may have to be different when other loops are on automatic.

As pointed out earlier, the problem with pairing on the basis of avoiding
interaction is that interaction is not necessarily a bad thing. Therefore, the use of
the RGA to decide how to pair variables is not an effective tool for process
control applications. Likewise the use of the RGA to decide what control struc-
ture (choice of manipulated and controlled variables) is best is not effective. What
is important is the ability of the control system to keep the process at  in
the face of load disturbances. Thus, load rejection is the most important criterion
on which to make the decision of what variables to pair, and what controller

structure is best.
The RGA is useful for avoiding poor pairings. If the diagonal element in the

RGA is negative, the system may show integral instability: the same situation

that we discussed in the use of the Niederlinski index. Very large values of the
RGA indicate that the system can be quite sensitive to changes in the parameter

values.

163.2 Inverse Nyquist Array
Rosenbrock (Computer-Aided Control System Design, Academic Press, 1974) was
one of the early workers in the area of multivariable control. He proposed the use
of  plots to indicate the amount of interaction among the loops.

In a SISO system we normally make a Nyquist plot of the total 
transfer function  B. If the system is closedloop stable, the  1, 0) point will
not be encircled positively (clockwise). Alternatively, we could plot  This
inverse plot should encircle the  1, 0) point negatively (counterclockwise) if the

system is closedloop stable. See Fig. 16.4.
An  plot for an Nth-order multivariable system consists of  curves,

one for each of the diagonal elements of the matrix that is the inverse of the
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 plane

FIGURE 16.4
SISO Nyquist and inverse Nyquist plots.

product of the and  matrices. If this product is defined  =
 then the  plots show the diagonal elements of  It  conve-

nient to use the nomenclature

(16.35)

and let the  element of the  matrix be

(16.36)

The three plots for a 3 x 3 system of  and  are sketched in Fig. 16.5.
Then the sum of the magnitudes of the off-diagonal elements in a given row

of the  matrix is calculated at one value of frequency and a circle is drawn with
this  This is done for several frequency values and for each diagonal
element.

 =  I +  I + . . . + I  I
 =  I +  I + . . . + I  I

(16.37)

The resulting circles are sketched in Fig. 16.5 for the  plot. The circles are
called Gershgorin rings. The bands that the circles sweep out are Gershgorin
bands. If all the off-diagonal elements were zero, the circles would have zero
radius and no interaction would be present. Therefore the bigger the circles, the
more interaction is present in the system.

If all of the Gershgorin bands encircle the  1, 0) point, the system is
closedloop stable as shown in Fig.  If some of the bands do not encircle the



FIGURE 16.5

Multivariable

 1, 0) point, the system may be closedloop unstable (Fig.  The  plots
for the Wood and Berry column are shown in Fig.

Usually the  is a very conservative measure of stability. Compensators
are found by trial and error to reshape the  plots so that the circles are small
and the system is “diagonally dominant.” The  method strives for the elimi-
nation of interaction among the loops and therefore has limited usefulness in
process control where load rejection is the most important question.

16.3.3 Decoupling
Some of the earliest work in multivariable control involved the use of 
to remove the interaction between the loops. Figure 16.7 gives the basic structure
of the system. The decoupling matrix  is chosen such that each loop does not
affect the others. Figure 16.8 shows the details of a 2 x 2 system. The decoupling
element  can be selected in a number of ways. One of the most straightforward
is to set  = = 1 and design the and elements so that they cancel



 PROCESSES

 bands

(a) Stable (b) May be unstable

 Wood and Berry

FIGURE 16.6
plots.
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FIGURE 16.7
Decoupling.

FIGURE 16.8
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(in a feedforward way) the effect of each manipulated variable in the other loop.
For example, suppose  is not at its  but  is. The  controller will
change in order to drive  back to But the change in  will disturb 
through the transfer function.

If, however, the decoupler element was set equal to ( 
there would be a change in  that would come through the  transfer func-
tion and would cancel out the effect of the change in on

G
(16.38)

Using the same arguments for the other loop, the decoupler could be set
equal to

G (16.39)

This so-called “simplified decoupling” splits the two loops so that they can be
independently tuned. Note, however, that the closedloop characteristic equations
for the two loops are not 1 +  = 0 and 1 +  = 0. The presence of
the decouplers changes the closedloop characteristic equations to

= o (16.40)

G
(16.41)

Other choices of decouplers are also possible. However, since decoupling may
degrade the load rejection capability of the system, the use of decouplers is not
recommended except in those cases where  changes are the major dis-
turbances.

16.4 ROBUSTNESS

The design of a controller depends on a model of the process. If the controller is
installed on a process whose parameters are not exactly the same as the model
used to design the controller, what happens to its performance? Is the system
unstable? Is it too underdamped or too slow? These are very practical questions
because the parameters of any industrial process always change somewhat due to
nonlinearities, changes in operating conditions, etc.

If a control system is tolerant to changes in process parameters, it is called
“robust.” In previous chapters for SISO systems, we designed for reasonable
damping coefficients or reasonable gain or phase margins or maximum 
loop log  so that the system would not be right at the limit of stability and
could tolerate some changes in parameters. In particular, + 2  for a maximum
closedloop log modulus was often used as a design criterion.
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In multivariable systems the question of robustness is very important. One
method developed by Doyle and Stein (IEEE Trans., 1981, Vol.  p. 4) is
quite useful and easy to use. It has the added advantage that it is quite similar to
the maximum closedloop log modulus criterion used in SISO systems.

Another procedure, recommended by Skogestad and Morari (Chemical
Engineering Science, Vol. 24, 1987, p.  involves designing the controller so
that the closedloop resonant peak occurs at a frequency region where the uncer-
tainty is not too large.

16.4.1 Trade-off Between Performance and Robustness

Before we discuss these two methods of robustness analysis, let us consider the
general relationship between performance and robustness.

In SISO systems, performance is improved (closedloop time constants are
decreased giving tighter control) as controller gain is increased. However, increas-
ing the gain also typically decreases the closedloop damping coefficient, which
makes the system more sensitive to parameter changes. This is an example of the
trade-off that always exists in any system between performance and robustness.
In multivariable systems the same trade-offs occur: the tighter the control, the
less robust the system.

A good example of this is in jet fighter control systems. During attack

periods when performance is very important, the pilot switches to the “attack
mode” where the controller type and settings are such that time constants are

small and performance is high. However, the plane is operating close to the sta-
bility region. Underdamped behavior can result in large overshoots.

When the pilot is trying to land the aircraft, this type of performance is
undesirable. An overshoot of position may mean the plane misses the deck of the
aircraft carrier. Also during landing it is not important to have lightning-fast
response to “joystick”  Therefore the pilot switches the control
system into the “landing mode” which has lower performance but is more
robust.

16.4.2 Doyle-Stein Criterion

A. SCALAR SISO SYSTEMS. Remember in the scalar SISO case we looked at the
closedloop servo transfer function  +  The peak in this curve, the
maximum closedloop log modulus (as shown in Fig.  is a measure of
the damping coefficient of the system. The higher the peak, the more 

damped the system and the less margin for changes in parameter values. Thus, in
SISO systems the peak in the closedloop log modulus curve is a measure of
robustness.

Now let us rearrange the closedloop servo transfer function.

1

1 1 + 
(16.42)
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FIGURE 16.9
log

If we plotted just the denominator of the right-hand side of Eq. 16.42, the curve
would be the reciprocal of the closedloop servo transfer function and would look
something like that shown in Fig.  The lower the dip in the curve, the lower
the damping coefficient and the less robust the system.

B. MATRIX MULTIVARIABLE SYSTEMS. For multivariable systems, the 
Stein criterion for robustness is very similar to the reciprocal plot discussed
above. The minimum singular value of the matrix given in Eq. (16.43) is plotted

as a function of frequency  This gives a measure of the robustness of a 
loop multivariable system.

Doyle-Stein criterion: minimum singular value of  + (16.43)

The  matrix is defined as before  =  .
The tuning and/or structure of the feedback controller matrix  is

changed until the minimum dip in the curve is something reasonable. Doyle and
Stein gave no definite recommendations, but a value of about  12  seems to
give good results.

The procedure is summarized in the program given in Table 16.4 which
calculates the minimum singular value of the  +  matrix for the Wood
and Berry column with the empirical controller settings. Figure 16.10 gives plots
of the singular values as a function of frequency. The lowest dip occurs at 0.23
radians per minute and is about  10.4
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TABLE
Doyle-Stein criterion for Wood and Berry column

REAL
DIMENSION
COMPLEX
COMPLEX

C PROCESS TRANSFER FUNCTION DATA
DATA
DATA
DATA

+
DO 1 
DO 1 

1
DATA

C EMPIRICAL CONTROLLER SETTINGS
DATA
DATA

C SET INITIAL FREQUENCY AND NUMBER OF POINTS PER DECADE

IA=4

C MAIN LOOP FOR EACH FREQUENCY

10  FREQUENCY SINGULAR VALUES’)
100 CALL 

C A L L
CALL
CALL
CALL
CALL
CALL
CALL CONJT(A,ASTAR,N)
CALL

JOBN=O
CALL
DO 6 

6

7

IF(W.LT.l.) GO TO 100
STOP
END

FREQUENCY SINGULAR VALUES
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TABLE 16.4 (continued)

-1.03602
- 1 . 2 6 8 3 8

1.07633 -1.55325
1.66805 -1.90751
2.41108 -2.35387
3.27344 -2.92264
4.20928 -3.65467
5.17272 -4.60511
6.12728 -5.84469
7.04909 -7.43694
7.92596 -9.27595
8.75518 -10.43061
9.54200 -9.13860
10.29958 -6.10422
11.05093 -2.98828
11.83274
12.69999 2.05383
13.72702 3.98402
5.55631 14.99744
6.81744 16.58355
7.85957 18.54112
8.81277 20.94697
9.81271 23.97799
10.95702 28.01324

16.4.3 Skogestad-Morari Method

The Doyle-Stein criterion discussed in the previous section gives us a simple way
to evaluate quantitatively the robustness of a multivariable system. However, it
assumes random variability in all the parameters of the system.

Skogestad and Morari recommend the use of “uncertainty” models for the
design of robust controllers. The idea is easy to visualize for an SISO system.
Suppose we have a process with the following  transfer function:

(16.44)

Let us assume that there is some uncertainty in the value of the D. It
can vary  fraction of D.

G

 +  + (16.45)
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Wood and Berry

Gains 0.20  0.04
Resets = 4.44 2.67

FIGURE 16.10

where

(16.46)

The A function is a measure of the model uncertainty. If we plot A as a
function of frequency (see Fig. 16.11) we can see that its magnitude is quite small

at low frequencies, but increases as frequency is increased. The larger the uncer-
tainty (the bigger  the lower the frequency at which the magnitude of the uncer-

tainty becomes large.
The basic idea proposed by Skogestad and Morari is to design the control-

ler so that the closedloop resonant frequency of the system occurs at a frequency
that is lower than the region where the uncertainty becomes significant. For
example, suppose  =  = 1 in Eq. (16.44). If a proportional controller is used
and a tuning criterion of  maximum closedloop log modulus is assumed,
the value of the controller gains and closedloop resonant frequencies for different
deadtimes are listed below.

0 . 1 8.03 9.55
0 . 2 4.12 6 . 3 1
0 . 5 1 . 9 5 3.02
1 . 0 1.21 1 . 8 2
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 FIGURE 16.11
Uncertainty plots.

If the uncertainty in the  is 0.01 min, Fig, 16.11 shows that its

magnitude becomes significant (magnitude greater than -20  that is, 10

percent) at frequencies above 10 radians per minute. Therefore this much uncer-

tainty would not require controller detuning for deadtimes greater than 0.2, but

the 0.1  may have to be detuned somewhat to maintain stability despite

the uncertainty.

However, if the uncertainty is 0.1 min, its magnitude becomes significant at

frequencies greater than 1 radian per second. Therefore lower gains would have

to be used in all of the cases.

For the multivariable case, an uncertainty matrix  must be defined which

contains the uncertainty in the various elements of the plant transfer function

(and also could include uncertainties in setting control valves or in measure-

ments).

(16.47)

where  is the nominal model of the system.

In the SISO case we look at magnitudes. In the multivariable case we look

at singular values. Thus plots of the maximum singular value of the  matrix will

show the frequency region where the uncertainties become significant. Then the
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controllers should be designed so that the minimum dip in the Doyle-Stein cri-

terion curves (the minimum singular value of the matrix  +  occurs in a

frequency range where the uncertainty is not significant.

If the uncertainty has a known structure, “structured singular values” are

used. In the book by Morari and Zafiriou (Robust Process Control, 1989,

Prentice-Hall) this topic is discussed in detail.

PROBLEMS
16.1.  and Wood (I. Series, 1969, No. 32,  1) give the following

transfer function matrix for an industrial distillation column:

The empirical PI controller settings reported were:

 = 

(a) Use a multivariable Nyquist plot and characteristic loci plots to see if the system

is closedloop stable.

(b) Calculate the values of the RGA, the Niederlinski index, and the Morari

resiliency index.

16.2. A distillation column has the following transfer function matrix:

34 -44.7

(54s +  +  (114s +  + 

31.6 -45.2

(78s +  + (42s  + 

Empirical PI diagonal controller settings are:

 =  1.6 7, =  min

(a) Check the closedloop stability of the system using a multivariable Nyquist plot

and characteristic loci plots.

(b) Calculate values of the RGA, the Niederlinski index, and the Morari resiliency

index.

16.3. A distillation column is described by the following linear

 = 

 =  +  + 
dt

(a) Use state-variable matrix methods to derive the  transfer function

matrix.

(b) What are the  eigenvalues of the system?
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(c) If the  steadystate gain matrix is

0.958  0.936
 =

0.639  0.661 1
calculate the RGA, the Niederlinski index, and the Morari resiliency index.

16.4. A 2 x 2 process has the  transfer function matrix

1 2 -1

 2  2 1
A diagonal proportional feedback controller is used with both gains set equal to  .

Time is in minutes.

(a) What is the  time constant of the system?

(b) Calculate the closedloop eigenvalues as functions of  .

(c) What value of will give a closedloop time constant of 0.1 min?

16.5. Air and water streams are fed into a pressurized tank through two control valves.

Air flows out of the top of the tank through a restriction, and water flows out

the bottom through another restriction. The linearized equations describing the

system are

 =  +  + 

dh
 =  + 

dt

where P = pressure

h = liquid height

 = air flow rate into tank

 = water flow rate into tank

Use state variable methods to calculate:

(a) The  eigenvalues and the  transfer function matrix.

(b) The closedloop eigenvalues if two proportional SISO controllers are used with

gains of 5 (for the pressure controller manipulating air flow) and 2 (for the level

controller manipulating water flow).

(c) Calculate the RGA and the Niederlinski index for this system.

16.6. A 2 x 2 multivariable process has the following  plant transfer function

matrix:

 1 1 2

A diagonal feedback controller is used with proportional controllers.

(a) What is the closedloop characteristic equation of this system?

(b) What are the RGA, Morari resiliency index, and Niederlinski index?
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16.7. The state-space description of a process is given below:

Derive the  plant transfer function matrix relating controlled variables

and manipulated variables



CHAPTER

17
DESIGN
OF
CONTROLLERS
FOR
MULTIVARIABLE
PROCESSES

In the last two chapters we have developed some mathematical tools and some

methods of analyzing multivariable closedloop systems. This chapter studies the

development of control structures for these processes.

The first part of this chapter deals with the conventional diagonal structure:

multiloop SISO controllers. Full-blown multivariable controllers are briefly dis-

cussed at the end of the chapter.

17.1 PROBLEM DEFINITION
Most industrial control systems use the multiloop SISO diagonal control struc-

ture. It is the most simple and understandable structure. Operators and plant

engineers can use it and modify it when necessary. It does not require an expert

in applied mathematics to design and maintain. In addition, the performance of

these diagonal controller structures is usually quite adequate for process control

applications. In fact there has been little quantitative, unbiased data showing that

594
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the performances of the more sophisticated controller structures are really that

much better! Some comparisons of performance are given in Sec. 17.7, and you

can be the judge as to whether the slight (if any) improvement is worth the price

of the additional complexity and engineering cost of implementation and main-

tenance.

So the multiloop SISO diagonal controller remains an important structure.

It is the base case against which the other structures should be compared. The

procedure discussed in this chapter was developed to provide a workable, stable,

simple SISO system with only a modest amount of engineering effort. The

resulting diagonal controller can then serve as a realistic benchmark, against

which the more complex multivariable controller structures can be compared.

The limitations of the procedure should be pointed out. It does not apply to

 unstable systems. It also does not work well when the time constants of

the different transfer functions are quite different; i.e., some parts of the process

much faster than others. The fast and slow sections should be designed separately

in this case.

The procedure has been tested primarily on realistic distillation column

models. This choice was deliberate because most industrial processes have similar

gain, deadtime, and lag transfer functions. Undoubtedly some pathological trans-

fer functions can be found that the procedure cannot handle. But we are inter-

ested in a practical engineering tool, not elegant, rigorous all-inclusive

mathematical theorems.

The procedure is called the “LACEY” procedure (not because it is full of

holes, as claimed by some!) from its developers: Luyben, Alatiqi, Chiang, Elaahi,

and Yu. The steps are summarized below. Each step is discussed in more detail in

later sections of this chapter.

 Select controlled variables. Use primarily engineering judgment based on

process understanding.

2. Select manipulated variables. Find the set of manipulated variables that gives

the largest Morari resiliency index (MRI).

3. Eliminate unworkable variable pairings. Eliminate pairings with negative

derlinski indexes.

4. Find the best pairing from the remaining sets.
(a) Tune all combinations using BLT tuning and check for stability

(characteristic loci plots) and robustness (Doyle-Stein and

Morari criteria).

(b) Select the pairing that gives the lowest magnitude closedloop load transfer

function : Tyreus load-rejection criterion (TLC).

You can see from the acronyms used above that I like to use ones that are

easy to remember: BLT (bacon, lettuce, and tomato) and TLC (tender loving

care). Remember we also discussed the “ATV” (all-terrain vehicle) identification

method back in Chap. 14.
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17.2 SELECTION OF CONTROLLED VARIABLES
17.2.1 Engineering Judgment
Engineering judgment is the principal tool for deciding what variables to control.

A good understanding of the process leads in most cases to a logical choice of

what needs to be controlled. Considerations of economics, safety, constraints,

availability and reliability of sensors, etc. must be factored into this decision.

For example, in a distillation column we are usually interested in control-

ling the purities of the distillate and bottoms product streams. In chemical reac-

tors, heat exchangers, and furnaces the usual controlled variable is temperature.

Levels and pressures must be controlled. In most cases these choices are fairly

obvious.

It should be remembered that controlled variables need not be simple

directly measured variables. They can also be computed from a number of sensor

inputs. Common examples are heat removal rates, mass flow rates, ratios of flow
rates, etc.

However, sometimes the selection of the appropriate controlled variable is

not so easy. For example, in a distillation column it is frequently difficult and

expensive to measure product compositions directly with sensors such as gas

 Instead, temperatures on various trays are controlled. The

selection of the best control tray to use requires a considerable amount of knowl-

edge about the column, its operation, and its performance. Varying amounts of

non-key components in the feed can affect very importantly the best choice of

control trays.

17.2.2 Singular Value Decomposition
The use of singular value decomposition (SVD), introduced into chemical engi-

neering by Moore and Downs  JACC, paper  1981) can give some

guidance in the question of what variables to control. They used SVD to select

the best tray temperatures. SVD involves expressing the matrix of plant transfer

function steadystate gains  as the product of three matrices: a  matrix, a

diagonal  matrix, and a  matrix.

 = (17.1)

It is somewhat similar to canonical transformation. But it is different in that the

diagonal  matrix contains as its diagonal elements, not the eigenvalues of the

matrix, but its singular values.

The biggest elements in each column of the  matrix indicate which

outputs of the process are the most sensitive. Thus SVD can be used to help

select which tray temperatures in a distillation column should be controlled.

Example 17.1 from the Moore and Downs paper illustrates the procedure.

Example 17.1. A nine-tray distillation column separating isopropanol and water
has the following steadystate gains between tray temperatures and the manipulated
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variables reflux R and heat input 

Tray
number A R

-0.00773271 0.0134723

 0.2399404 0.2378752

-2.5041590 2.4223120

 5.9972530 5.7837800

 1.6773120 1.6581630

0.0217166 0.0259478

0.1976678 -0 .1586702

0.1289912 -0.1068900

0.0646059 -0.0538632

The elements in this table are the elements in the steadystate gain matrix of the
column  which has 9 rows and 2 columns.

Now  is decomposed into the product of three matrices.

 = 

0.082898 1

-0.0361514 -0.0835548

-0.3728142 -0.0391486

-0.8915611 0.1473784

-0.2523613 0.6482796
-0.0002581 -0.6482796

0.0270092 -0.4463671
0.0178741 0.2450451

0.0089766 -0.1182182

9.3452 0
0.052061 1

(17.2)

(17 .3 )

(17.4)

(17.5)

0.7191619 -0.6948426

-0.6948426 -0.71916191 (17.6)

The largest element in the first column in  is -0.8915611 which corresponds to
tray 6. Therefore SVD would suggest the control of tray 6 temperature.

The software to do the SVD calculations is readily available (Computer Methods
For Mathematical Computations, Forsythe, Malcolm, and Moler, Prentice-Hall,

1977).
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17.3 SELECTION OF MANIPULATED VARIABLES
Once the controlled variables have been specified, the control structure depends

only on the choice of manipulated variables. For a given process, selecting differ-

ent manipulated variables will produce different control structure alternatives.

These control structures are independent of the controller structure, i.e., pairing of

variables in a diagonal multiloop SISO structure or one full-blown multivariable

controller.

For example, in a distillation column the manipulated variables could be

the flow rates of reflux and vapor  to control distillate and

bottoms compositions. This choice gives one possible control structure. Alterna-

tively we could have chosen to manipulate the flow rates of distillate and vapor

 This yields another control structure for the same basic distilla-

tion process.

The Morari resiliency index (MRI) discussed in Chap. 16 can be used to

choose the best set of manipulated variables. The set of manipulated variables

that gives the largest minimum singular value over the frequency range of inter-

est is the best. The differences in MRI values should be fairly large to be mean-

ingful. If one set of manipulated variables gives an MRI of 10 and another set

gives an MRI of 1, you can conclude that the first set is better. However, if the

two sets have  that are 10 and 8, there is probably little difference from a

resiliency standpoint and either set of manipulated variables could be equally

effective.

This selection of control structure is independent of variable pairing and

controller tuning. The MRI is a measure of the inherent ability of the process

(with the specified choice of manipulated variables) to handle disturbances,

changes in operating conditions, etc.

The problem of the effect of scaling on singular values is handled by

expressing the gains of all the plant transfer functions in dimensionless form. The

gains with engineering units are divided by transmitter spans and multiplied by

valve gains. This yields the dimensionless gain that the controller sees and has to

cope with.

17.4 ELIMINATION OF POOR PAIRINGS
The Niederlinski index (Sec. 16.1.4) can be used to eliminate some of the pairings.

Negative values of this index mean unstable pairings, independent of controller

tuning. As illustrated in Example 16.3, pairing  with  and  with R gives a

negative Niederlinski index, so this pairing should not be used.

For a 2 x 2 system, a negative Niederlinski index is equivalent to pairing

on a negative RGA element. For example, in Example 16.7 the  RGA element

is positive (2.01). This says that the  to R pairing is okay. However, the

element is negative  telling us that the  to  pairing is not okay.
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17.5 BLT TUNING

One of the major questions in multivariable control is how to tune controllers in

a diagonal multiloop SISO system. If PI controllers are used, there are 2N tuning

parameters to be selected. The gains and reset times must be specified so that the

overall system is stable and gives acceptable load responses. Once a consistent

and rational tuning procedure is available, the pairing problem can be attacked.

The tuning procedure discussed below (called  biggest log-modulus

tuning) provides such a standard tuning methodology. It satisfies the objective of

arriving at reasonable controller settings with only a small amount of engineering

and computational effort. It is not claimed that the method will produce the best

results or that some other tuning or controller structure will not give superior

performance. What is claimed is that the method is easy to use, is easily under-

standable by control engineers, and leads to settings that compare very favorably

with the empirical settings found by exhaustive and expensive trial-and-error

tuning methods used in many studies.

The method should be viewed in the same light as the classical SISO

Ziegler-Nichols method. It gives reasonable settings which provide a starting

point for further tuning and a benchmark for comparative studies.

BLT tuning involves the following four steps :

1. Calculate the Ziegler-Nichols settings for each individual loop. The ultimate

gain and ultimate frequency  of each diagonal transfer function  are

calculated in the classical SISO way. To do this numerically, a value of fre-

quency  is guessed. The phase angle is calculated, and the frequency is varied

to find the point where the Nyquist plot of  crosses the negative real axis

(phase angle is  180 degrees). The frequency where this occurs is  The

reciprocal of the real part of is the ultimate gain. Table 17.1 gives a

FORTRAN program with a subroutine ZNT which does this iterative calcu-

lation using simple interval halving.

2. A detuning factor F is assumed. F should always be greater than. 1. Typical

values are between 1.5 and 4. The gains of all feedback controllers  are

calculated by dividing the Ziegler-Nichols gains  by the factor F.

 =
F

(17.7)

where  = 

Then all feedback controller reset times  are calculated by multiplying the

Ziegler-Nichols reset times  by the same factor F.

F (17.8)

where (17.9)

The F factor can be considered as a detuning factor which is applied to all

loops. The larger the value of F, the more stable the system will be but the
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TABLE 17.1
BLT tuning for Wood and Berry column

REAL
DIMENSION
COMPLEX
COMPLEX XDETER,WFUNC
EXTERNAL

C PROCESS TRANSFER FUNCTION DATA
DATA
DATA
DATA

DO 1 
DO 1 

1
DATA

CALL
STOP
END

SUBROUTINE
COMPLEX
COMPLEX XDETER,CLTF
REAL KC.KP.KU

C FIND ZIEGLER-NICHOLS SETTINGS

CALL

77  F D B M A X W M A X  ‘ )
1000 DO 10 

10
DBMAX=-200.

 BLT  LOOP ’
STOP

C EVALUATE PROCESS TRANSFER FUNCTION MATRIX
C GAIN KP(I),  D(I), LEAD
C THREE LAGS

100 CALL 
C EVALUATE DIAGONAL PI  CONTROLLER MATRIX

CALL
CALL IDENT(YID,N)
CALL
CALL MADD(YID,Q,CHAR,N)
CALL DETER(N,CHAR,A,C,XDETER)

C FORM W FUNCTION  DET(I+GB)  1.
XDETER=XDETER-1.
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TABLE 17.1 (continued)

 TO 100

2
C DBMAX SPECIFICATION IS

 TO 50
C USE INTERVAL HALVING TO CHANGE FBLT

20
FBLT=FBLT-DF

 GO TO 30

GO TO 1000
30

GO TO 1000
50
9  BLT GAINS

8  BLT RESET TIMES
RETURN
END

C
SUBROUTINE
COMPLEX
COMPLEX
REAL KC,KP,KU,KZN
DIMENSION
DO 1000 

C GUESS FREQUENCY

 THEN

G O T 0 5
ELSE

5 DW=W
C CALCULATE PHASE ANGLE

100

 LOOP ’
STOP
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TABLE 17.1 (continued)

C CHECK IF PHASE ANGLE IS -180
 GO TO 50

C USE INTERVAL HALVING TO REGUESS FREQUENCY

20
21
22 W=W-DW

GO TO 100
30
31
32 W=W+DW

GO TO 100
50

C CALCULATE ULTIMATE GAIN
CALL

1000 CONTINUE
 ZIEGLER-NICHOLS TUNING’
 N  K U  W U KZN T Z N ’

DO 200 

200
99

RETURN
END

Results

ZIEGLER-NICHOLS TUNING

N KU WU KZN TZN
1 2.10 1.61  3 . 2 5
2  9 . 2 8
F D B M A X W M A X
10.00000
8.00000
6.00000
4.00000
2.00000 6.47123
3.00000 2.62291
2.50000 4.16342
2.75000 3.32153
2.62500 3.72360
2.56250 3.93576
2.53125 4.04989
2.54688 3.99289

BLT GAINS =
BLT RESET TIMES 8.29 23.63
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more sluggish will be the  and load responses. The method yields set-

tings that give a reasonable compromise between stability and performance in

multivariable systems.

3. Using the guessed value of F and the resulting controller settings, a

able Nyquist plot of the scalar function  =  1 + Det  +

is made. See Sec. 16.1.2, Eq. (16.5). The closer this contour is to the  1, 0)

point, the closer the system is to instability. Therefore the quantity

will be similar to the closedloop servo transfer function for a SISO loop

 +  B). Therefore, based on intuition and empirical grounds, we

define a multivariable closedloop log modulus

W
 = 20 log,, (17.10)

The peak in the plot of over the entire frequency range is the biggest log

modulus

4. The F factor is varied until  equal to  where N is the order of the

system. For N = 1, the SISO case, we get the familiar  maximum

closedloop log modulus criterion. For a 2 x 2 system, a  value of

is used; for a 3 x 3,  and so forth. This empirically determined cri-

terion has been tested on a large number of cases and gives reasonable per-

formance, which is a little on the conservative side.

This tuning method should be viewed as giving preliminary controller set-

tings which can be used as a benchmark for comparative studies. Note that the

procedure guarantees that the system is stable with all controllers on automatic

and also that each individual loop is stable if all others are on manual (the F
factor is limited to values greater than one so the settings are always more con-

servative than the Ziegler-Nichols values). Thus a portion of the integrity ques-

tion is automatically answered. However, further checks of stability would have

to be made for other combinations of manual/automatic operation.

The method weighs each loop equally, i.e., each loop is equally detuned. If it
is important to keep tighter control of some variables than others, the method

can be easily modified by using different weighting factors for different controlled

variables. The less-important loop could be detuned more than the

important loop.

Table 17.1 gives a FORTRAN program that calculates the BLT tuning for

the Wood and Berry column. The subroutine BLT is called from the main

program where the process parameters are given. The resulting controller settings

are compared with the empirical setting in Table 17.2. The BLT settings usually

have larger gains and larger reset times than the empirical. Time responses using

the two sets of controller tuning parameters are compared in Fig. 17.1.

Results for the 3 x 3 Ogunnaike and Ray column are given in Table 17.2

and in Fig. 17.2. The  and  + 6” refer to the value of used. Both of

these cases illustrate that the BLT procedure gives reasonable controller settings.
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TABLE 17.2

BLT, Ziegler-Nichols, and empirical controller
tuning

Wood and Berry Ogunnaike and Ray

Empirical

02-0.04

Z-N

BLT

 factor 2.55 2.15

If the process transfer functions have greatly differing time constants, the

BLT procedure does not work well. It tends to give a response that is too oscil-

latory. The problem can be handled by breaking up the system into fast and slow

sections and applying BLT to each smaller subsection.

The BLT procedure discussed above was applied with PI controllers. The

method can be extended to include derivative action (PID controllers) by using

two detuning factors: F detunes the ZN reset and gain values and detunes the

ZN derivative value. The optimum value of is that which gives the minimum

08

0

0

0

WB

Time. mm

FIGURE 17.1

Wood and Berry column: BLT and empirical tuning
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OR
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0

 25 
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0 2 0 40 60

Time, min

FIGURE 17.2
Ogunnaike and Ray column: BLT and empirical tuning.

value of  and still satisfies the + 2N maximum closedloop log modulus criterion

(see the paper by Monica, Yu, and Luyben in  Research, Vol. 27, 1988, p.

969).

17.6 LOAD REJECTION PERFORMANCE

In most chemical processes the principal control problem is load rejection. We

want a control system that can keep the controlled variables at or near their

setpoints in the face of load disturbances. Thus the closedloop regulator transfer

function is the most important.

The ideal closedloop relationship between the controlled variable and the

load is zero. Of course this can never be achieved, but the smaller the magnitude
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of the closedloop regulator transfer function, the better the control. Thus a

rational criterion for selecting the best pairing of variables is to choose the

pairing that gives the smallest peaks in a plot of the elements of the closedloop

regulator transfer function matrix. This criterion was suggested by Tyreus (Paper

presented at the Lehigh University Short Course on Distillation Control,

Bethlehem, Pa.,  so we call it the Tyreus load-rejection criterion (TLC).
The closedloop relationships for a multivariable process were derived in

Chap. 15 [Eq. 

= + + + GM,,,
For a 3 x 3 system there are three elements in the  vector, so three curves are

plotted of each of the three elements in the vector  +  for

the specified load variable L. Table 17.3 gives a program that calculates the TLC

curves for the 3 x 3 Ogunnaike and Ray column.

17.7 MULTIVARIABLE CONTROLLERS

Several multivariable controllers have been proposed during the last few decades.

The optimal control research of the 1960s used variational methods to produce

multivariable controllers that minimized some quadratic performance index. The

method is called linear quadratic (LQ). The mathematics are elegant but very few

chemical engineering industrial applications grew out of this work. Our systems

are too high-order and nonlinear for successful application of LQ methods.

In the last decade several other multivariable controllers have been pro-

posed. We will briefly discuss two of the most popular in the sections below.

Other multivariable controllers that will not be discussed but are worthy of

mention are “minimum variance controllers” (see Bergh and MacGregor,

Research, Vol. 26, 1987,  1558) and “extended horizon controllers” (see Ydstie,

Kershenbaum, and Sargent, Vol. 31, 1985, p. 1771).

17.7.1 Multivariable DMC

Undoubtedly the most popular multivariable controller is the multivariable

extension of dynamic matrix control. We developed DMC for a SISO loop in

Chap. 8. The procedure was a fairly direct least-squares computational one that

solved for the future values of the manipulated variable such that some per-

formance index was minimized.

The procedure can be extended to the multivariable case with little concep-

tual effort. You simply expand the  matrix discussed in Chap. 8 to include all

the individual  matrices relating all of the outputs to all of the inputs. The

performance index is expanded to include the errors in all the controlled vari-

ables plus weighting the moves in all the manipulated variables. The book-

keeping and the number-crunching become more extensive but the concept is the

same.



DESIGN  CONTROLLERS FOR MULTIVARIABLE PROCESSES 607

TABLE 17.3
TLC for Ogunnaike and Ray column

REAL
DIMENSION
COMPLEX
COMPLEX GL(4)

C GM PROCESS TRANSFER FUNCTION DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DO 1 
DO 1 

DATA
DATA
DATA

C GL PROCESS  FUNCTION DATA
DATA
DATA
DATA
DO 2 

2
DATA

C CONTROLLER DATA  EMPIRICAL SETTINGS
DATA
DATA

CALL
STOP
END

C
SUBROUTINE
REAL
DIMENSION
COMPLEX
COMPLEX
DIMENSION

IA=4

7 7  W  TLC2 TCL3’)
100 CALL 

CALL
CALL
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TABLE 17.3 (continued)

CALL IDENT(HIN,N)
CALL
CALL
CALL
CALL
DO 6 

6

7

 TO 100
RETURN
END

C
SUBROUTINE LOADTF(GL,W,N,KL,TAUL,DL)
COMPLEX
DIMENSION
REAL KL(4)

DO 10 

10 CONTINUE
RETURN
END

C
C MATRIX-VECTOR MULTIPLICATION

SUBROUTINE
COMPLEX
DO 30 

DO 20 
20
30 CONTINUE

RETURN
END

Results

W  T L C 1 TLC2 TCL3
-51.187 -18.386 -7.112
-47.967 -17.091 -3.642
-45.022 -16.026
-42.393 -15.209 3.093
-40.119 -14.645 6.361
-38.231 -14.331 9.540
-36.722 -14.266 12.547
-35.442 -14.440 15.252
-34.002 -14.781 17.553
-32.012 -15.072 19.407
-29.484 -14.857 20.770
-26.696 -13.620 21.450
-23.911 -11.456 20.922
-21.406 -9.153 17.734
-19.702 -7.744 7.871
-19.614 -8.386 15.111

W TLC1 TLC2 TCL3
 -21.309 -11.531 15.413
 -24.020 -16.312 8.943
 -27.079 -19.446 9.338
 -29.796 -19.764 6.413

1.0000 -32.102 -21.345 5.627
1.2589 -35.142 -24.907 3.107
1.5849 -37.406 -26.733
1.9953 -39.624 -28.397 -1.342
2.5119 -41.039 -29.725 -3.389
3.1623 -42.692 -32.305 -5.623
3.9811 -45.035 -34.280 -7.692
5.0119 -46.915 -36.055 -9.727
6.3096 -49.044 -38.224 -11.729
7.9433 -50.828 -40.280 -13.540

10.0000 -52.814 -42.443 -15.796
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Figure 17.3 gives some comparisons of the performance of the multivariable

DMC structure with the diagonal structure. Three linear transfer-function models

are presented, varying from the  x 2 Wood and Berry column to the 4 x 4

sidestream column/stripper complex configuration. The DMC tuning constants

used for these three examples are NP = 40 and NC = 15. See Chap. 8, Sec. 8.9.

The weighting factors (f) for the changes in the manipulated variables were

10, 0.1, and 0.1 for the three cases. These were chosen so that the maximum

magnitudes of the changes in the manipulated variables did not exceed those

experienced when the diagonal structure was used. If these weighting factors were

made smaller, tighter control could be achieved, but the changes in the manipu-

lated variables would be larger. In most chemical engineering systems, we cannot

permit rapid and large swings in manipulated variables. For example, such large

swings in steam to the reboiler of a distillation column could flood the column or

even blow out trays in the lower section of the tower.

Using the multivariable DMC produces some improvement for

disturbances. However, as Fig. 17.3 shows, there are only slight differences

between DMC and the diagonal structure (with BLT tuning) for load dis-

turbances. Thus the real economic incentive for the more complex multivariable

configuration has yet to be demonstrated by impartial evaluators.

17.7.2 Multivariable IMC

In theory, the internal model control methods discussed for SISO systems in

Chap. 11 can be extended to multivariable systems (see the paper by Garcia and

Morari in IEC Process Design and Development, Vol. 24, 1985, p. 472).

In practice, however, this extension is not as straightforward as in DMC. In

multivariable DMC, there is a definite design procedure to follow. In

variable IMC, there are steps in the design procedure that are not quantitative

but involve some “art.” The problem is in the selection of the invertible part of

the process transfer function matrix. Since there are many possible choices, the

design procedure becomes cloudy.

The basic idea in multivariable IMC is the same as in single-loop IMC. The

ideal controller would be the inverse of the plant transfer function matrix. This

would give perfect control. However, the inverse of the plant transfer function

matrix is not physically realizable because of deadtimes, higher-order denomina-

tors than numerators, and RHP zeros (which would give an  unstable

controller).

So the  plant transfer function matrix  is split up into two

parts : an invertible part and a noninvertible part.

(17.12)

Then the multivariable IMC controller is set equal to the invertible part times a

“filter” matrix which slows up the closedloop response to give the system more

robustness. The filter acts as a tuning parameter (like setting the closedloop time

constant in the SISO case in Chap. 8).
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However, the procedure for specifying the invertible part  is not a defi-

nite, step-by-step recipe. There are several invertible parts that could be chosen.

These problems are discussed in the book by Morari and Zafiriou (Robust

Process Control, Prentice-Hall, 1989).

PROBLEMS
17.1. Calculate the BLT settings for the Wardle and Wood column (see Prob. 16.1). Using

these  settings, calculate the minimum singular value from the Doyle-Stein
method.

17.2. Determine the BLT settings for the 2 x 2 multivariable system given in Prob. 16.2.

17.3. Alatiqi presented (I&EC Process Design 1986, Vol. 25, p. 762) the transfer func-
tions for a 4 x 4 multivariable complex distillation column with sidestream stripper

for separating a ternary mixture into three products. There are four controlled vari-
ables: purities of the three product streams  x,,, and  and a temperature
difference AT to minimize energy consumption. There are four manipulated vari-
ables: reflux R, heat input to the reboiler  , heat input to the stripper reboiler 
and flow rate of feed to the stripper The 4 x 4 matrix of  transfer
functions relating controlled and manipulated variables is :

(33s + + 1) (31.6s +  + 1)  1 (22s + 

1 44.6s 1 (34.5s + 1
- 5

(13s + (13.3s + 18.5s + 1  1

 + 

(43s +  + 1) (45s +  + 3s + 1) (31.6s +  + 1) (48s +  + 1)

The vector of  transfer functions relating the controlled variables to the
load disturbance (feed composition: mole fraction of intermediate component) is:

(19.2s + 

35s +

24s + 1

 + 4s + 

Calculate the BLT settings and the TLC curves using these settings.

17.4 A distillation column has the following  transfer function matrix relating
controlled variables (x, and  to manipulated variables (reflux ratio RR and
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reboiler heat input

(6.9s  + 1) (1.8s +  + 1)

 +  + (1.3s +  + 1)

(a) Calculate the RGA and Niederlinski index for this pairing

(h) Calculate the Morari resiliency index at zero frequency.

(c) Calculate the Ziegler-Nichols settings for the individual diagonal loops.

 Check the closedloop stability of the system when these ZN settings are used by

making a multivariable Nyquist plot.

(e) Use the BLT procedure to determine a detuning  factor that gives a maximum

closedloop log modulus of + 4 
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