What is order of an Instrument? ZERO ORDER FIRST ORDER SECOND ORDER

INSTRUMENTATION & CONTROL

B. TECH 4TH SEM MECHANICAL ENGINEERING

Order of an Instrument

The order of an instrument can be defined as the highest order of the derivative describing the behavior of the instrument.

Transfer function of a general instrumentation system is given as

$$G(s) = \frac{C(s)}{R(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}; m \le n$$

The highest power of the complex variable s in the denominator of the transfer function determines the order of a system. For a zero order system the maximum power of s will be zero, and so on.

Zero Order System

Zero Order System : A zero order system is one in which the highest order of the derivative describing the system behavior is zero. The mathematical model of a zero order system is given by

$$a_0 c(t) = b_0 r(t)$$

Any system which closely obeys above equation over its entire operating range is defined as a zero order system.

First Order System

First Order System: In the mathematical model of a first order system, the highest order of derivative describing the system behavior is one.

System with a storage or dissipative capability but negligible inertial forces may be modeled by using a first order differential equation.

The general mathematical model for a measurement system is given by

$$a_{n} \frac{d^{n} c(t)}{dt^{n}} + a_{n-1} \frac{d^{n-1} c(t)}{dt^{n-1}} + \dots + a_{1} \frac{dc(t)}{dt} + a_{0} c(t)$$
$$= b_{m} \frac{d^{m} r(t)}{dt^{m}} + b_{m-1} \frac{d^{m-1} r(t)}{dt^{m-1}} + \dots + b_{1} \frac{dr(t)}{dt} + b_{0} r(t)$$

For a first order system in above equation all a's and b's other than a_1 , a_0 and b_0 will be zero. Thus the equation will become

$$a_1 \frac{dc(t)}{dt} + a_0 c(t) = b_0 r(t)$$

Second Order System - Systems that possess inertia contain a second order derivative term in their modeled equation and can be considered as a second order system. Accelerometers, diaphragm pressure transducers (including microphones) and mass-damper system are examples of second order systems. For the mass-damper system, i.e. mechanical translation system, the applied force (input quantity) is resisted by forces $f_m(t)$, $f_k(t)$ and $f_B(t)$. "Thus, $f(t) = f_m(t) + f_k(t) + f_B(t)$

$$f(t) = M \frac{d^2 x(t)}{dt^2} + B \frac{dx(t)}{dt} + K x(t)$$

where displacement x(t) is the output.

Thank You