

**Department of Computer Science & Engineering  
Bachelor of Technology (B. Tech.)  
[Computer Science & Engineering (Data Science)]  
VI – Semester (Scheme & Syllabus)**

| S.No.         | Course Type | Course Code | Course Title                                    | Hrs./Week                              |   |    | Credits |
|---------------|-------------|-------------|-------------------------------------------------|----------------------------------------|---|----|---------|
|               |             |             |                                                 | L                                      | T | P  |         |
| 1             | PCC         | DS13        | Big Data and Hadoop                             | 2                                      | 1 | -  | 3       |
| 2             | PCC         | DS14        | Machine Learning-II                             | 2                                      | 1 | -  | 3       |
| 3             | PCC         | DS15        | Natural Language Processing                     | 2                                      | 1 | -  | 3       |
| 4             | PEC         | DS02        | Professional Elective Course -II                | 2                                      | - | -  | 2       |
| 5             | IOC         | ----        | Interdisciplinary Open Course-I                 | 2                                      | 1 | -  | 3       |
| 6             | HSMC        | HS05        | Humanities and Social Sciences Open Courses - I | 2                                      | - |    | 2       |
| 7             | LC          | DS13(P)     | Big Data and Hadoop Lab                         | -                                      | - | 2  | 1       |
| 8             | LC          | DS14(P)     | Machine Learning-II Lab                         | -                                      | - | 2  | 1       |
| 9             | PROJ        | DS02        | Minor Project                                   | -                                      | - | 4  | 2       |
| 10            | PROJ        | DS03        | Evaluation of Internship-I                      | -                                      | - | 4  | 2       |
| 11            | LLC         | LLC03       | Liberal Learning Course -III                    | -                                      | - | 2  | 1       |
|               | PROJ        | -           | Internship-II                                   | Credit to be added in Seventh Semester |   |    |         |
| 12            | MLC         | MLC04       | Intellectual Property Rights                    | 1                                      | - | -  | Audit   |
| Total Credits |             |             |                                                 | 12                                     | 4 | 14 | 23      |
|               |             |             |                                                 |                                        |   |    |         |
|               |             |             |                                                 |                                        |   |    |         |

|                                                                        |  |                                                           |  |
|------------------------------------------------------------------------|--|-----------------------------------------------------------|--|
| Professional Elective Course(PEC) –II DS02<br>(Any One Course)         |  | Interdisciplinary Open Course(IOC)-I,<br>(Any One Course) |  |
| (A) Cyber Security                                                     |  | MA01 (A) Scientific Aptitude                              |  |
| (B) Compiler Design*                                                   |  | (B) Green Technology                                      |  |
| (C) Information Storage Management                                     |  | (C) Operations Research                                   |  |
| Humanities and Social Sciences Open Courses – I, HS05 (Any One Course) |  | IOC-FT(A) Fundamental of Fire & Safety                    |  |
| (A) English Language Proficiency                                       |  |                                                           |  |
| (B) German Language                                                    |  |                                                           |  |
| (C) French Language                                                    |  |                                                           |  |
| (D) Japanese Language                                                  |  |                                                           |  |
| (E) Soft Skills and Interpersonal Communication                        |  |                                                           |  |

|                 |                            |                         |                    |
|-----------------|----------------------------|-------------------------|--------------------|
| <b>PCC-DS13</b> | <b>Big Data and Hadoop</b> | <b>2L:1T:0P (3hrs.)</b> | <b>Credits: 03</b> |
|-----------------|----------------------------|-------------------------|--------------------|

### **Course Objective:**

To study the basic technologies that forms the foundations of Big Data.

### **Course Content (37hrs)**

**Module 1:** **(07hrs)**  
 Introduction to BigData Platform, Traits of Big data, Challenges of Conventional Systems, Web Data, Evolution of Analytic Scalability, Analysis vs Reporting, Statistical Concepts: Sampling Distributions, Re-Sampling, Statistical Inference, Prediction Error.

**Module2:** **(08hrs)**  
 Need of Hadoop, Data centers and Hadoop Cluster overview, Overview of Hadoop Daemons, Hadoop Cluster and Racks, Learning Linux required for Hadoop, Hadoop ecosystem tools overview, Big data Hadoop opportunities

**Module3:** **(08hrs)**  
 HDFS Daemons – Namenode, Datanode, Secondary Namenode, Hadoop FS and Processing Environment's UIs, Fault Tolerant, High Availability, Block Replication, Hadoop Processing Framework: YARN Daemons – Resource Manager, NodeManager, Job assignment & Execution flow, MapReduce Architecture, MapReduce life cycle, Word Count Example(or) Election Vote Count

**Module4:** **(08hrs)**  
 Introducing Hadoop Hive, Detailed architecture of Hive, Comparing Hive with Pig and RDBMS, Working with Hive Query Language, Creation of a database, table, group by and other clauses, Various types of Hive tables, HCatalog, Storing the Hive Results, Hive partitioning, and Buckets.

**Module5:** **(06hrs)**  
 Introduction to Hadoop Framework: Spark and Scala, Apache Pig: Advantage of Pig over MapReduce, Pig vs Hive Use case, Introduction to HBASE, Fundamentals of HBase, SQL vs. NOSQL, Application of Sqoop, Flume, Oozie

**Course Outcome:**

- 1: Understand the foundational concepts and challenges of big data and statistical analysis.
- 2: Recognize the importance of Hadoop and its ecosystem in managing big data.
3. Understand HDFS and Mapreduce algorithm
- 4: Learn to use Hadoop Hive for data warehousing and SQL-like querying.
- 5: Explore advanced Hadoop tools and frameworks like Spark, Pig, HBase, and more.

**List of Text / Reference Books:**

1. Michael Minelli, Michelle Chambers, and Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley
2. DT Editorial Services, Big-Data Black Book, Wiley
3. Dirk deRoos, Chris Eaton, George Lapis, Paul Zikopoulos, Tom Deutsch, "Understanding Big Data Analytics for Enterprise Class Hadoop and Streaming Data", McGraw Hill.
4. Thomas Erl, Wajid Khattak, Paul Buhler, "Big Data Fundamentals: Concepts, Drivers and Techniques", Prentice Hall.
5. Bart Baesens "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications (WILEY Big Data Series)", John Wiley & Sons
6. Arshdeep Bahga, Vijay Madisetti, "Big Data Science & Analytics: A HandsOn Approach ", VPT
7. and Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", CUP
8. Tom White, "Hadoop: The Definitive Guide", O'Reilly.

|                 |                            |                          |                    |
|-----------------|----------------------------|--------------------------|--------------------|
| <b>PCC-DS14</b> | <b>Machine Learning-II</b> | <b>2L: 1T:0P (3hrs.)</b> | <b>Credits: 03</b> |
|-----------------|----------------------------|--------------------------|--------------------|

**Course Objective:**

Students understand issues and challenges of Machine Learning. And Data, model selection, model Complexity with Understanding of the strengths and weaknesses of many popular machine learning approaches.

**Course Contents (38hrs)**

**Module 1:** **(06hrs)**

Support Vector Machines- What are SVMs, Linear & Non- Linearly separable problems, kernel functions, digit recognition example, Advantages & Disadvantages of SVMs, SVM vs Other algorithms. VC Dimensions in SVM

**Module2:** **(08hrs)**

Decision Tree: Basic entropy, gini index, information gain, pros & cons, mathematical formulation of decision trees, Cancer Identification Example. Random Forest: Definition & relation with decision trees, Pruning & Bagging in Random Forests, Mathematical Formulation of Random Forests, OCR parameter tuning example.

**Module3:** **(10hrs)**

Neural Network Theory: Inspiration for Feed forward neural networks, Types of neural networks, layers, artificial neural networks, activation functions, bias nodes, error of the networks, backpropagation explained, Optimisation with gradient descent

**Module4:** **(08hrs)**

Deep Neural Networks: Activation functions revisited, loss functions, stochastic gradient descent, hyperparameters, implementation of Deep Neural Networks, Multiclass Classification, Evaluating & Testing the model

**Module5:** **(06hrs)**

Convolutional Neural Networks: Basics, feature selection, kernels, pooling, flattening, illustration, CNN visualisation tools. Appendices: Some methods of optimization like Genetic algorithms, Simulated Annealing, Hilbert Space

**Course Outcomes:**

1. Learning about Support Vector Machines
2. Understanding the concepts of Decision Trees & Random forests.
3. Getting to know the basics of Neural Networks
4. Building Deep Neural Networks
5. Learning about Convolutional Neural Networks & auxiliary features of Neural Networks.

**List of Text/Reference Books:**

1. Introduction to Machine learning, Nils J.Nilsson
2. Machine learning for dummies, IBM Limited ed, by Judith Hurwitz and Daniel Kirsch
3. Introduction to Machine Learning with Python A guide for data scientists, Andreas, C. Muller & Sarah Guido, O'Reilly
4. [2022] Machine Learning and Deep Learning Bootcamp in Python: Course from Udemy

|                 |                                    |                         |                    |
|-----------------|------------------------------------|-------------------------|--------------------|
| <b>PCC-DS15</b> | <b>Natural Language Processing</b> | <b>2L: 1T:0P(3hrs.)</b> | <b>Credits: 03</b> |
|-----------------|------------------------------------|-------------------------|--------------------|

**Course Objective:**

To gain the knowledge for developing advanced technology of computer systems like speech recognition and machine translation.

**Course Contents (40hrs)**

**Module 1:** **(08hrs)**

Introduction to NLP: Machine Learning & NLP, Argmax computation, WSD: WordNet, application in query expansion, wikitionary, semantic relatedness, Measures of WordNet similarity, Rensick's work on WordNet similarity

**Module 2:** **(08hrs)**

Algorithms: Parsing algorithms, Evidence for deeper structure; Top-Down and Bottom-Up Parsing algorithms; Noun structure, Non-noun structure and Parsing algorithms, probabilistic parsing: sequence labeling, PCFG, training issues, inside outside probabilities

**Module 3:** **(08hrs)**

Speech & Phonetics: Arguments & Adjuncts, Hidden Markov Models, Morphology, Graphical Models of sequence labeling in NLP, Phonetics, Vowels & Consonants

**Module 4:** **(08hrs)**

Forward Backward Probability, Viterbi algorithm, phonology, sentiment analysis & opinions on the web, Machine Translation & MT Tools – GIZA++ & Moses, Text Entailment, POS Tagging, Phonology: ASR & speech synthesis

**Module 5:** **(08hrs)**

Hidden Markov Models & Viterbi, Precision, Recall, F-score and map, Semantic relations, Universal Networking Language, Towards dependency parsing, Semantic Role Extraction, Baum Welch algorithm & Hidden Markov Models Training.

**Course Outcomes:**

1. Learning about the basics of NLP
2. Working with Parsing algorithms
3. Getting acquainted with Speech & Phonetics & Morphology.
4. Understanding the concepts of Forward Backward Probability
5. Learning about Hidden Markov Models & other advanced concepts.

**List of Text/Reference Books:**

- 1.D. Jurafsky and J.H. Martin, “Speech and Language Processing; Processing”,Prentice Hall,2000.
- 2.C. Manning and H. Schutze,“Foundations of Statistical Natural Language Processing”, MIT Press
- 3.James Allen.“Natural Language Understanding”, Addison Wesley,1994.
- 4.Richard M Reese, “Natural Language Processing with Java”, OReilly Media,2015.
- 5.Tanveer Siddiqui, U.S. Tiwary, “Natural Language Processing and Information Retrieval”, Oxford University Press,2008
- 6.NPTEL Course: <https://nptel.ac.in/courses/106101007>

|                    |                       |                         |                    |
|--------------------|-----------------------|-------------------------|--------------------|
| <b>PEC-DS02(A)</b> | <b>Cyber Security</b> | <b>3L: 0T:0P(3hrs.)</b> | <b>Credits: 02</b> |
|--------------------|-----------------------|-------------------------|--------------------|

**Course Objective:**

Analyze and resolve security issues in an organization to secure an IT infrastructure.

**Course Contents (40hrs)**

**Module 1:** **(06hrs)**

Introduction of Cyber Crime, Challenges of cyber crime, Classifications of Cybercrimes: E- Mail Spoofing, Spamming, Internet Time Theft, Salami attack/Salami Technique.

**Module2:** **(10hrs)**

Web jacking, Online Frauds, Software Piracy, Computer Network Intrusions, Password Sniffing, Identity Theft, cyber terrorism, Virtual Crime, Perception of cyber criminals: hackers, insurgents and extremist group etc. Web servers were hacking, session hijacking..

**Module3:** **(10hrs)**

Cyber Crime and Criminal justice: Concept of Cyber Crime and the IT Act, 2000, Hacking, Teenage Web Vandals, Cyber Fraud and Cheating, Defamation, Harassment and E- mail Abuse, Other ITAct Offences, Monetary Penalties, jurisdiction and Cyber Crimes, Nature of Criminality, Strategies to tackle Cyber Crime and Trends.

**Module4:** **(08hrs)**

The Indian Evidence Act of 1872 v. Information Technology Act, 2000: Status of Electronic Records as Evidence, Proof and Management of Electronic Records; Relevancy, Admissibility and Probative Value of E-Evidence, Proving Digital Signatures, Proof of Electronic Agreements, Proving Electronic Messages.

**Module5:** **(06hrs)**

Tools and Methods in Cybercrime: Proxy Servers and Anonymizers , Password Cracking, Key loggers and Spyware, virus and worms, Trojan Horses, Backdoors, DoS and DDoS Attacks, Buffer and Overflow, Attack on Wireless Networks, Phishing : Method of Phishing, Phishing Techniques. Introduction to KALI Linux.

**Course Outcomes:**

1. Define and explain the concepts of cybercrime and its classification.
2. Delineate the components online frauds, intrusions, virtual crimes and hacking.
3. Knowledge of different act's in cybersecurity
4. List the various parts of IT act related to electronic records.
5. Knowledge of different Cyber Security tools.

**List of Text/Reference Books:**

1. Jonathan Clough, "Principles of Cyber crime", Cambridge University Press, 2nd Edition, 2015.
2. John R. Vacca, "Computer Forensics: Computer Crime Scene Investigation", Charles River Media, 2<sup>nd</sup> Edition, 2005.
3. Vivek Sood "Cyber Law Simplified", TMH, 2001.
4. Nina Godbole, Sunit Belapure, "Cyber Security", Wiley-India
5. William Hutchinson, Mathew Warren, "Information Warfare: Corporate attack and defense in digital world", Elsevier, Reed International and Professional Publishing Ltd, 2001
6. Harish Chander, "Cyber Laws and IT Protection", Prentice Hall India Learning Private Limited, 2012

|                    |                        |                          |                    |
|--------------------|------------------------|--------------------------|--------------------|
| <b>PEC-DS02(B)</b> | <b>Compiler Design</b> | <b>3L: 0T:0P (3hrs.)</b> | <b>Credits: 02</b> |
|--------------------|------------------------|--------------------------|--------------------|

### **Course Objective:**

To explain the different stages in the process of compilation

### **Course Contents(40hrs)**

#### **Module 1:**

**(06hrs)**

Introduction to compiling & Lexical Analysis Introduction of Compiler, Major data Structure in compiler, types of Compiler, Front-end and Backend of compiler, Compiler structure: analysis- synthesis model of compilation, various phases of a compiler, Single & Multipass Compiler, Lexical analysis: Input buffering, Specification & Recognition of Tokens, Design of a Lexical Analyzer Generator, LEX

#### **Module2:**

**(10hrs)**

Syntax Analysis & Syntax Directed Translation Syntax analysis: CFGs, Top down parsing, Brute force approach, recursive descent parsing, transformation on the grammars, predictive parsing, bottom up parsing, operator precedence parsing, LR parsers (SLR,LALR, LR),Parser generation. Syntax directed definitions: Construction of Syntax trees, Bottom up evaluation of S-attributed definition, L attribute definition, Top down translation, Bottom Up evaluation of inherited attributes Recursive Evaluation, Analysis of Syntax directed definition.

#### **Module3:**

**(10hrs)**

Type checking: type system, specification of simple type checker, equivalence of expression, types, type conversion, overloading of functions and operations, polymorphic functions. Runtime Environment: storage organization, Storage allocation strategies, Parameter passing, dynamic storage allocation, Symbol table, Error Detection & Recovery..

#### **Module4:**

**(08hrs)**

Intermediate code generation: Declarations, Assignment statements, Boolean expressions, Case statements, back patching, Procedure calls Code Generation: Issues in the design of code generator, Basic block and flow graphs, Register allocation and assignment, DAG representation of basic blocks, peephole optimization, and generating code from DAG

#### **Module5:**

**(06hrs)**

Introduction to Code optimization: sources of optimization of basic blocks, loops in flow graphs, dead code elimination, loop optimization, Introduction to global data flow analysis, Code Improving transformations ,Data flow analysis of structure flow graph Symbolic debugging of optimized code.

**Course Outcomes:**

1. Understand the overview of phase of compiler and Lexical analysis.
2. Design and implement various parsing techniques of compiler.
3. Apply type checking for semantic analysis and analyze Run time environment.
4. Design and implement different intermediate code generation techniques.
5. Analyze various code optimization techniques

**List of Text / Reference Books:**

- 1.A.V. Aho, R. Sethi, and J.D. Ullman. “Compilers: Principles, Techniques and Tools” , Pearson Education,2nd Edition ,2007.
- 2.V Raghavan, “Principals of Compiler Design”, TMH Pub.,2017
- 3.Louden. “Compiler Construction: Principles and Practice”, CengageLearning,1997
- 4.A. C. Holub. “Compiler Design in C” , Prentice-Hall Inc., 1993.
- 5.Ronald Mak, “Writing compiler & Interpreters”, Willey Pub.,3rd Edition,2009

|                    |                                             |                          |                    |
|--------------------|---------------------------------------------|--------------------------|--------------------|
| <b>PEC-DS02(C)</b> | <b>Information Storage &amp; Management</b> | <b>3L: 0T:0P (3hrs.)</b> | <b>Credits: 02</b> |
|--------------------|---------------------------------------------|--------------------------|--------------------|

**Course Objective:**

To introduce solutions available for data storage, Core elements of a data center infrastructure, role of each element in supporting business activities

**Course Contents (40hrs)**

**Module 1:** **(06hrs)**

Introduction to Storage Technology: Data proliferation, evolution of various storage technologies, Overview of storage infrastructure components, Information Lifecycle Management, Data categorization.

**Module2:** **(10hrs)**

Storage Systems Architecture: Intelligent disk subsystems overview, Contrast of integrated vs. modular arrays, Component architecture of intelligent disk subsystems, Disk physical structure components, properties, performance, and specifications, RAID levels & parity algorithms, hot sparing, Front end to host storage provisioning, mapping and operation.

**Module3:** **(10hrs)**

Introduction to Networked Storage: JBOD, DAS, NAS, SAN & CAS evolution and comparison. Applications, Elements, connectivity, standards, management, security and limitations of DAS, NAS, CAS & SAN.

**Module4:** **(08hrs)**

Hybrid Storage solutions; Virtualization: Memory, network, server, storage & appliances. Data center concepts & requirements, Backup & Disaster Recovery: Principles Managing & Monitoring: Industry management standards (SNMP, SMI-S, CIM), standard framework applications, Key management metrics (Thresholds, availability, capacity, security, performance)

**Module5:** **(06hrs)**

Information storage on cloud :Concept of Cloud, Cloud Computing, storage on Cloud, Cloud Vocabulary, Architectural Framework, Cloud benefits, Cloud computing Evolution, Applications & services on cloud, Cloud service providers and Models, Essential characteristics of cloud computing, Cloud Security and integration

**Course Outcomes:**

1. To Understand the Concept of Information Storage and Data centre Environment.
2. To Understand about Data Protection.
3. To Understand Fiber Channel SAN.
4. To describe the different backup and recovery topologies and their role in providing disaster recovery and business continuity capabilities.
5. To Understand Cloud Computing.

**List of Text/Reference Books:**

1. G. Somasundaram & Alok Shrivastava (EMC Education Services) editors, “Information Storage and Management: Storing, Managing, and Protecting Digital Information”, Wiley India,2009.
2. Ulf Troppens, Wolfgang Mueller-Friedt, Rainer Erkens, Rainer Wolafka, Nils Haustein, “Storage Network explained: Basic and application of fiber channels, SAN, NAS, iSESI, INFINIBAND and FCOE”, Wiley India.
3. John W. Rittinghouse and James F. Ransome, “Cloud Computing: Implementation, Management and Security”, CRC Press, Taylor Frances Pub.1st Edition,2017
4. Nick Antonopoulos, Lee Gillam, “Cloud Computing: Principles, System & Application”, Springer.
5. Anthony T. Velete, Toby J.Velk, and Robert Eltenpeter, “Cloud Computing: A practical Approach” ,McGraw-Hill Education (India) Pvt. Limited,2009
6. Dr. Kumar Saurabh, “Cloud Computing: Insight into New Era I”, Wiley India Pvt. Limited, 2011.

|                    |                                |                           |                    |
|--------------------|--------------------------------|---------------------------|--------------------|
| <b>LC- DS13(P)</b> | <b>Big Data and Hadoop Lab</b> | <b>0L: 0T:02P (2hrs.)</b> | <b>Credits: 01</b> |
|--------------------|--------------------------------|---------------------------|--------------------|

### **Course Objective:**

To introduce solutions available for data storage, Core elements of a data center infrastructure, role of each element in supporting business activities

### **Course Contents:**

#### **Module 1:**

- Introduction to Hadoop Ecosystem
- Hadoop Architecture: HDFS, YARN, and MapReduce
- Introduction to Hadoop Distributed File System (HDFS)
- Basic HDFS Commands: put, get, ls, rm, etc
- Concept of Serialization and Deserialization
- Working with integer data types

#### **Module2:**

- Overview of MapReduce Architecture
- Key Concepts: Mapper, Reducer, Combiner
- Writing and executing basic MapReduce program
- Implementing a Grep Program
- Understanding MapReduce Paradigm through word count and execution time analysis

#### **Module3:**

- Overview of NoSQL Databases
- Introduction to MongoDB and its features
- Installation and Setup Create, Read, Update, Delete (CRUD) operations
- Working with collections and data types
- Storing student information using various collection types (Map)

#### **Module4:**

- Overview of Spark Framework
- Key Features and Components of Spark
- Introduction to Spark RDDs and DataFrames
- Basic Transformations and Actions in Spark
- Writing and executing Spark applications
- Integration with Hadoop ecosystem

#### **Module5:**

- Overview of Hive and its architecture
- Hive Metastore and HiveQL (HQL)
- Creating and managing databases and tables
- Loading, inserting, and querying data in Hive

## **Course Outcome**

- Understand and Explain Big Data and Hadoop Ecosystem
- Implement and Analyze MapReduce Programs
- Perform Data Management Operations Using NoSQL Databases:
- Utilize Apache Spark for Big Data Processing:
- Execute Data Queries Using Hive and HQL

## **List of Experiment**

1. To Study of Big Data Analytics and Hadoop Architecture.
2. To Study HDFS Commands.
3. To Study serializes and deserializes data of integer type in Hadoop.
4. To run a basic Word Count MapReduce program to understand MapReduce Paradigm.  
Basic CRUD operations in MongoDB.
5. Store the basic information about students such as roll no and name using various collection types Map.
6. To run a Grep program on Hadoop to understand Mapreduce Paradigm: To count words in a given file, To view the output file, and To calculate execution time.
7. Installation of SPARK framework with or without Hadoop framework.
8. To Study about the Hive commands using HQL (DDL and DML).

|                    |                                |                           |                    |
|--------------------|--------------------------------|---------------------------|--------------------|
| <b>LC- DS14(P)</b> | <b>Machine Learning-II Lab</b> | <b>0L: 0T:02P (2hrs.)</b> | <b>Credits: 01</b> |
|--------------------|--------------------------------|---------------------------|--------------------|

### **Course Objective:**

Gain a comprehensive understanding of machine learning concepts, develop proficiency in various algorithms, and enhance practical skills in Python for real-world applications.

### **Course Contents:**

#### **Module 1:**

- Linear SVM classifier, visualize the decision boundary, and identify support vectors.
- SVM with linear, polynomial, and RBF kernels on a dataset. Compare and visualize performance.
- SVM on the MNIST dataset for digit recognition, assess model accuracy and performance.

#### **Module2:**

- Compare SVM with other classification algorithms.
- Implement and compare SVM, Logistic Regression, and k-NN on a dataset.
- Discuss performance metrics.
- The concept of VC dimensions.

#### **Module 3:**

- Build and evaluate a basic neural network.
- Train and evaluate the network.
- Exploring Activation Functions
- Understand and compare different activation functions.
- Implement ReLU, Sigmoid, and Tanh activation functions in a neural network.
- Compare their performance on a dataset.
- Optimize a neural network using backpropagation.

#### **Module4:**

- Implement and train a deep neural network.
- Use a deep learning framework (e.g., TensorFlow, Keras) to build and train a deep neural network on a complex dataset.
- Use grid search or random search for optimization and observe effects on model performance.

#### **Module5:**

- Understand the fundamentals of CNNs.
- CNN for image classification, visualize learned filters and feature maps.
- Advanced CNN Techniques
- Implement pooling and dropout techniques in a CNN. Use visualization tools to understand learned features.

## **Course Outcome**

- 1:** Master SVM classifiers with various kernels, visualize decision boundaries, and apply SVM to digit recognition.
- 2:** Compare SVM with other classifiers, implement SVM, Logistic Regression, and k-NN, and discuss VC dimensions and performance metrics.
- 3:** Build, train, and optimize neural networks, exploring and comparing different activation functions.
- 4:** Implement and optimize deep neural networks using frameworks like TensorFlow or Keras.
- 5:** Understand and apply CNNs for image classification, including advanced techniques like pooling and dropout.

**Experiment List:**

1. Implement a linear SVM classifier using a simple dataset. Visualize the decision boundary and support vectors.
2. Implement an SVM with different kernel functions (linear, polynomial, RBF) on a dataset. Compare the performance and visualizations.
3. Implement SVM for digit recognition using the MNIST dataset. Evaluate the model's accuracy and performance.
4. Compare SVM with other classification algorithms (e.g., Logistic Regression, k-NN) on a dataset. Discuss the results and performance metrics
5. Implement examples to illustrate the concept of VC dimensions and its implications on model complexity and capacity.
6. Implement a simple neural network from scratch for a classification problem. Train and evaluate the network.
7. Implement various activation functions (ReLU, Sigmoid, Tanh) in a neural network. Compare their performance on a dataset.
8. Implement the backpropagation algorithm and use gradient descent to optimize the neural network. Visualize the error reduction over iterations.
9. Implement a deep neural network using a deep learning framework (e.g., TensorFlow, Keras). Train the network on a complex dataset and evaluate its performance
10. Experiment with different hyperparameters (learning rate, batch size, number of layers) and observe their effects on model performance. Use grid search or random search for optimization
11. Implement a basic CNN for image classification. Visualize the learned filters and feature maps.
12. Implement techniques like pooling and dropout in a CNN. Use visualization tools to understand what the CNN has learned

|                   |                      |                           |                    |
|-------------------|----------------------|---------------------------|--------------------|
| <b>PROJ- DS02</b> | <b>Minor Project</b> | <b>0L: 0T:04P (4hrs.)</b> | <b>Credits: 02</b> |
|-------------------|----------------------|---------------------------|--------------------|

Prerequisite: Basic understanding of programming concepts, data science and machine learning, and familiarity with relevant programming languages and tools.

**Module 1:**

- Understand the fundamentals of Data Science and Deep Learning
- Identify real-world problems suitable for Data Science and Deep Learning projects
- Explain the complete project lifecycle for both domains
- Understand basic tools, data types, and ethical considerations
- Definition and scope of Data Science
- Structured, semi-structured, and unstructured data
- Public datasets: Kaggle, UCI, OpenML (overview)
- Data labeling techniques and challenges

**Module2:**

- Problem definition
- Data collection and integration
- Data cleaning and preprocessing
- Exploratory Data Analysis (EDA)
- Feature engineering
- Model selection (overview)
- Model evaluation and validation

**Module 3:**

- Programming languages: Python
- Data Science libraries: NumPy, Pandas, Matplotlib, Seaborn
- Machine Learning & Deep Learning libraries: Scikit-learn, TensorFlow, Keras, PyTorch
- Development environments: Jupyter Notebook, Google Colab
- Hardware basics: CPU vs GPU

**Module5:**

- Differentiate between Data Science and Deep Learning projects
- Identify suitable real-world problems for project development
- Explain the end-to-end workflow of DS and DL projects
- Select appropriate datasets and tools
- Understand ethical and social implications

**Module5:**

- Metrics for Data Science: Accuracy, Precision, Recall, F1-score, RMSE
- Metrics for Deep Learning: Loss functions, accuracy, confusion matrix
- Overfitting and underfitting

**Course Outcome**

- 1: Explain the fundamental concepts of Data Science, Machine Learning, and their real-world applications.
- 2: Analyze and preprocess structured and unstructured datasets using appropriate Data Science techniques.
- 3: Apply Exploratory Data Analysis (EDA) and feature engineering techniques to extract meaningful insights from data.
- 4: Build and evaluate Machine Learning models using supervised and unsupervised learning algorithms.
- 5: Select appropriate Machine Learning models and performance metrics for a given real-world problem.

|                   |                                   |                           |                    |
|-------------------|-----------------------------------|---------------------------|--------------------|
| <b>PROJ- DS03</b> | <b>Evaluation of Internship-I</b> | <b>0L: 0T:04P (4hrs.)</b> | <b>Credits: 02</b> |
|-------------------|-----------------------------------|---------------------------|--------------------|

**Course Objective:**

To provide computer science and engineering students with hands-on industry experience, enhancing technical skills, professional competencies, and exposure to industry practices. Through practical projects, students will apply academic knowledge, gain insights into latest technologies, and develop problem-solving abilities, preparing them for future careers.

**Course Contents:**

**1 Orientation and Goal Setting:**

- ✓ Introduction to the internship, setting goals, and defining learning objectives. Understanding the expectations and responsibilities during the internship.

**2 Work place Skills Development:**

- ✓ Professional behavior and work place ethics.
- ✓ Communication skills, both written and verbal, in a professional setting.

**3 Technical Skills Application:**

- ✓ Applying theoretical knowledge in practical, real-world projects.
- ✓ Utilizing specific tools, technologies, and methodologies relevant to the industry.

**4 Project Management:**

- ✓ Engaging in project planning, execution, and monitoring. Documenting and reporting project progress.

**5 Evaluation and Feedback:**

- ✓ Receiving and acting on feedback from supervisors.
- ✓ Reflecting on personal and professional growth during the internship.

**6 Final Report and Presentation:**

- ✓ Preparing a comprehensive report detailing the internship experience.
- ✓ Presenting findings and learning outcomes to peers and faculty.

Upon completion of the Computer Science Engineering internship, students will be able to:

1. **Apply Academic Knowledge:** Demonstrate the application of classroom learning to real-world projects and problems.
2. **Develop Professional Skills:** Exhibit improved professional skills such as team work, communication, and problem-solving.
3. **Exhibit Technical Proficiency:** Show proficiency in using industry-standard tools and technologies.
4. **Develop Project Management skills:** Manage and document projects effectively, meeting deadlines and quality standards.
5. **Prepare Career path & reflective learning:** Gain practical insights into career paths and professional development in the field of computer science engineering. Reflect on their learning experiences, identifying strengths and areas for improvement.